Skip to article frontmatterSkip to article content

Cold Pool Analysis from BNF XSACR

Imports

import numpy as np
import matplotlib.pyplot as plt
import pyart
from netCDF4 import Dataset
import xarray as xr
import glob
import datetime
import pandas as pd
import matplotlib.dates as mdates
import os
import math
import calendar

Plot a Column Vertical Profile (CVP)

def find_nearest(array, value):
    array = np.asarray(array)
    idx = (np.abs(array - value)).argmin()
    return idx, array[idx]

def calculate_elevation_angle_array(height: np.ndarray, range_: np.ndarray) -> np.ndarray:
    """Returns an array of elevation angles in degrees."""
    return np.degrees(np.arctan2(height, range_))
def plot_qvp_5variables(qvp_dbzs,qvp_vels,qvp_wths,qvp_zdrs,qvp_rhos,dtimes, hgt,el, case,htop,qvp_dir):


    
    
    # # Ensure dtimes is np.array of datetime
    # if isinstance(dtimes, list):
    #     dtimes = np.array(dtimes)
    
    # # Fix dimensions for pcolormesh
    # if dtimes.ndim == 1:
    #     dtimes = np.tile(dtimes, (new_dbzs.shape[0], 1))
    
    # # Check datetime format
    # assert np.issubdtype(dtimes.dtype, np.datetime64) or isinstance(dtimes[0, 0], datetime.datetime)
    
    # # Ensure start_time and end_time are datetime
    # if isinstance(start_time, str):
    #     start_time = datetime.datetime.fromisoformat(start_time)
    # if isinstance(end_time, str):
    #     end_time = datetime.datetime.fromisoformat(end_time)
    
    # Transpose and convert to arrays
    new_dbzs = np.array(qvp_dbzs).T
    new_zdrs = np.array(qvp_zdrs).T
    new_rhos = np.array(qvp_rhos).T
    new_vels = np.array(qvp_vels).T
    new_wths = np.array(qvp_wths).T
    
    # Apply RhoHV mask
    mask = new_rhos < 0.2
    new_dbzs[mask] = np.nan
    new_zdrs[mask] = np.nan
    new_rhos[mask] = np.nan
    new_vels[mask] = np.nan
    new_wths[mask] = np.nan
    
    # Setup plot
    ytop = htop
    fig, axes = plt.subplots(5, 1, sharex=True, figsize=(8, 15))
    fig.subplots_adjust(hspace=0.3)
    
    # Plot Reflectivity
    #pcm = axes[0].pcolormesh(dtimes, hgt / 1e3, new_dbzs, vmin=-40, vmax=40, cmap='HomeyerRainbow')
    pcm = axes[0].pcolormesh(dtimes, hgt / 1e3, new_dbzs, vmin=-40, vmax=40, cmap='ChaseSpectral')
    fig.colorbar(pcm, ax=axes[0], label='[dBZ]')
    axes[0].set_ylim(0, ytop)
    axes[0].set_title('Reflectivity')
    axes[0].set_ylabel('height [km]')
    
    # Plot Velocity
    pcm = axes[1].pcolormesh(dtimes, hgt / 1e3, new_vels, vmin=-5, vmax=5, cmap='Spectral_r')
    fig.colorbar(pcm, ax=axes[1], label='[m/s]')
    axes[1].set_ylim(0, ytop)
    axes[1].set_title('Vd')
    axes[1].set_ylabel('height [km]')
    
    # Plot Width
    pcm = axes[2].pcolormesh(dtimes, hgt / 1e3, new_wths, vmin=0, vmax=3, cmap='Spectral_r')
    fig.colorbar(pcm, ax=axes[2], label='[m/s]')
    axes[2].set_ylim(0, ytop)
    axes[2].set_title('Width')
    axes[2].set_ylabel('height [km]')
    
    # Plot ZDR
    #pcm = axes[3].pcolormesh(dtimes, hgt / 1e3, new_zdrs, vmin=-2, vmax=4, cmap='Spectral_r')
    pcm = axes[3].pcolormesh(dtimes, hgt / 1e3, new_zdrs, vmin=-2, vmax=4, cmap='ChaseSpectral')
    fig.colorbar(pcm, ax=axes[3], label='[dB]')
    axes[3].set_ylim(0, ytop)
    axes[3].set_title('ZDR')
    axes[3].set_ylabel('height [km]')
    
    # Plot RhoHV
    pcm = axes[4].pcolormesh(dtimes, hgt / 1e3, new_rhos, vmin=0, vmax=1, cmap='Spectral_r')
    fig.colorbar(pcm, ax=axes[4])
    axes[4].set_ylim(0, ytop)
    axes[4].set_title('RhoHV')
    axes[4].set_ylabel('height [km]')
    axes[4].set_xlabel('Time [UTC] on ' + str(case))
    # axes[4].set_xlim([start_time, end_time])
    axes[4].xaxis.set_major_formatter(mdates.DateFormatter('%H:%M'))
    
    # axes[4].set_xlim([dtimes.min(), dtimes.max()])
    # axes[4].xaxis.set_major_formatter(mdates.DateFormatter('%H:%M'))
    # Add main title
    plt.suptitle(f'BNF XSACR QVPs at {el} deg for {case}', y=0.95, fontsize=15)
    
    # Optional save
     
    #save_gif = qvp_dir + f'bnf_xsacr_qvp_{el}deg_{case}.png'
    #save_gif = qvp_dir + f'bnf_xsacr_qvp_{el}deg_{case}htop_{htop}.png'
    #plt.savefig(save_gif , dpi=400, bbox_inches="tight")
    plt.show()
 
qvp_dir =  '/data/home/mdeng/data/bnf/qvp/xsacr/' 
#os.makedirs(qvp_dir, exist_ok=True)

#dir = '/data/datastream/bnf/bnfxsacrcfrS4.a1/'
#afile =  dir + 'bnfxsacrcfrS4.a1.20250514.225456.nc'

dir = "data/project/ARM_Summer_School_2025/radar/xsacr/*" 
#afile =  dir + 'bnfxsacrcfrS4.a1.202505.225456.nc'


#el = 9
el = 16

#azimuth range for a CVP
az1 = 200
az2 = 240

yr = "2025"
month = '05'
day = '10'
date_join = f"{yr}-{month}-{day}"
case = yr + month + day

files = sorted(glob.glob('/data/project/ARM_Summer_School_2025/radar/xsacr/bnfxsacrcfrS4.a1.'+case+'*'))
#files = sorted(glob.glob('/data/datastream/bnf/bnfkasacrcfrS4.a1/bnfkasacrcfrS4.a1.'+case+'*'))

nfiles = len(files)

qvp_dbzs = []
qvp_zdrs = []
qvp_rhos = []
qvp_vels = []
qvp_wths = []
dtimes = []



for file in files:
    rad = pyart.io.read(file)
    #print(file)

    
    if rad.scan_type == 'ppi':
       

        #find azimuths for XSACR file
        azmth = rad.azimuth['data']
        
        #Make this into the same shape as our radar field data
        azmth_square = np.repeat(np.expand_dims(azmth, 1), len(rad.range['data']), axis=1)
        rad.add_field_like('reflectivity', 'azsq', azmth_square)
 
        #Make a gate filter
        mygf = gatefilter = pyart.correct.GateFilter(rad)
        
        #filter on aziumth, az1 to az2 degrees
        mygf.exclude_outside('azsq', az1,az2) 


        
        #qvp = pyart.retrieve.quasi_vertical_profile(rad, desired_angle=el)
        qvp = pyart.retrieve.quasi_vertical_profile(rad, desired_angle=el, gatefilter= mygf)
        rng = qvp['range']
        hgt = qvp['height']

        angle = calculate_elevation_angle_array(hgt, rng)
        angle_mean = np.mean(angle)
        d_angle  = np.abs(angle_mean - el)
        if  d_angle  < 1:
          
            qdbz = qvp['reflectivity']
            #qdbz = qvp['attenuation_corrected_reflectivity_h'] # for csapr
            qvel = qvp['mean_doppler_velocity']
            qwth = qvp['spectral_width']
            
            qzdr = qvp['differential_reflectivity']
            qrho = qvp['copol_correlation_coeff']

            rng0 = qvp['range']
            hgt0 = qvp['height']

        
            qvp_dbzs.append(qdbz)
            qvp_zdrs.append(qzdr)
            qvp_rhos.append(qrho)
            qvp_vels.append(qvel)
            qvp_wths.append(qwth)
    
            #date = os.path.basename(files[i])[18:-3]
            date = os.path.basename(file)[18:-3]
            dto = datetime.datetime.strptime(date, '%Y%m%d.%H%M%S')
            dtimes.append(dto)
            
            #print ('done with ' + file)


rng_corr = rng*np.tan(np.deg2rad(el))
# Define the time limits 
start_time = np.datetime64(date_join+"T00:00:00")
end_time = np.datetime64(date_join+"T18:59:59")
htop = 10
plot_qvp_5variables(qvp_dbzs,qvp_vels,qvp_wths,qvp_zdrs,qvp_rhos,dtimes, hgt0,el, case,htop, qvp_dir)
htop = 2
plot_qvp_5variables(qvp_dbzs,qvp_vels,qvp_wths,qvp_zdrs,qvp_rhos,dtimes, hgt0,el, case,htop, qvp_dir)


[1.4996567 2.4884412 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 13.399661 12.997025 16.996109]
16.990616
[1.4941634 2.4994278 3.499199  4.493477 ]
4.493477
[ 6.9929047  9.997711  12.997025  16.996109 ]
16.996109
[1.4996567 2.4994278 3.4937057 4.49897  ]
4.493477
[ 6.9929047  9.992218  12.997025  16.996109 ]
16.991806
[1.4886702 2.4995184 3.4937057 4.49897  ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[1.4996567 2.4939346 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[1.4886702 2.4994278 3.4948554 4.493477 ]
4.493477
[ 6.9929047  9.992218  12.997025  16.990616 ]
16.996109
[1.4886702 2.4994278 3.499199  4.493477 ]
4.493477
[ 6.9929047  9.997711  12.997025  16.994118 ]
16.996109
[1.4941634 2.4994278 3.4937057 4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.990122]
16.996109
[1.4941634 2.4950006 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[1.4996567 2.4994278 3.504692  4.493477 ]
4.493477
[6.9874115 0.9997711]
0.9997711
[2.4994278 3.504692  4.493477 ]
4.5061398
[ 6.998398  9.997711 12.997025 16.990616]
16.996109
[1.4996567 2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[1.4941634 2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[1.4941634 2.4994278 3.4937057 4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.993206
[2.4994278 3.4937057 4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[2.4994278 3.499199  4.493477 ]
4.493477
[ 6.9929047  9.997711  12.997025  16.990616 ]
16.993895
[1.4941634 2.4994278 3.499199  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[1.4886702 2.4994278 3.4984298 4.493477 ]
4.493477
[ 6.998398  9.997711 13.414885 12.997025 16.996109]
16.996109
[1.4996567 2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 13.381525 12.997025 16.996109]
16.996109
[1.4941634 2.4994278 3.4980052 4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[1.4941634 2.4994278 3.499199  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[2.4932375 3.499199  4.493477 ]
4.493477
[ 6.998398   9.997711  13.3903675 12.997025  16.996109 ]
16.996109
[2.4994278 3.504692  4.493477 ]
4.493477
[ 6.9929047  9.992218  12.997025  16.990616 ]
16.996109
[1.4941634 2.4994278 3.4937057 4.49897  ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[1.4941634 2.4994278 3.499199  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[1.4996567 2.4978614 3.4967759 4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.990616]
16.991354
[1.4886702 2.4994278 3.4937057 4.493477 ]
4.493477
[ 6.998398  9.997711 13.389459 12.997025 16.996109]
16.996109
[2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[2.490163 3.504692 4.493477]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[2.4994278 3.499199  4.49897  ]
4.493477
[ 6.998398  9.997711 13.382345 12.997025 16.996109]
16.996109
[2.4994278 3.499199  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[2.4939346 3.496489  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[2.504921 3.504692 4.493477]
4.493477
[ 6.9956    9.997711 12.997025 16.990616]
16.996109
[2.4994278 3.4987152 4.493477 ]
4.493477
[ 6.9929047  9.992218  12.997025  16.996109 ]
16.996109
[1.4941634 2.4994278 3.4937057 4.493477 ]
4.493477
[ 6.9951015  9.997711  13.391639  12.997025  16.996109 ]
16.996109
[1.4941634 2.4960139 3.4979146 4.493477 ]
4.493477
[ 6.998398  9.997711 12.991531 16.996109]
16.996109
[1.4886702 2.4939346 3.499199  4.493477 ]
4.493477
[ 6.998398  9.997711 12.992292 16.996109]
16.996239
[1.4941634 2.4994278 3.495923  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[1.4941634 2.4947093 3.499199  4.493477 ]
4.493477
[ 6.998398  9.997711 12.991531 16.996109]
16.996109
[1.4996567 2.4884412 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[1.4941634 2.4994278 3.4964032 4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[1.4886702 2.4994278 3.4972003 4.493477 ]
4.493477
[ 6.998398  9.997711 13.380668 12.997025 16.996109]
16.996109
[1.4996567 2.4930618 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[2.499195 3.504692 4.493477]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[2.5024166 3.499199  4.493477 ]
4.493477
[ 6.998398  9.997711 13.406672 12.997025 16.996109]
16.996109
[2.5045276 3.499199  4.493477 ]
4.493477
[ 6.9932833  9.997711  12.997025  16.990616 ]
16.996109
[1.4941634 2.4994278 3.499199  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.98576
[1.4941634 2.4994278 3.4973812 4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[1.4996567 2.4884412 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[1.4886702 2.4994278 3.499199  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[1.4886702 2.4994278 3.4951684 4.493477 ]
4.493477
[ 6.998398  9.997711 12.991863 16.996109]
16.996109
[1.4996567 2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[1.4941634 2.4939346 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[1.4916443 2.4994278 3.499199  4.493477 ]
4.493477
[ 6.9929047  9.997711  12.997025  16.990616 ]
16.996109
[1.4886702 2.4994278 3.4975448 4.49897  ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[1.4886702 2.4994278 3.4962301 4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[2.4994278 3.5042741 4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[2.4994278 3.497285  4.493477 ]
4.493477
[ 6.9929047  9.997711  12.997025  16.990616 ]
16.996109
[1.4941634 2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.995232]
16.996109
[1.4941634 2.4994278 3.4937057 4.49897  ]
4.493477
[ 6.998398  9.997711 13.385557 12.997025 16.996109]
16.996109
[1.4886702 2.4994278 3.499199  4.493477 ]
4.493477
[ 6.9929047  9.997711  12.997025  16.991869 ]
16.996109
[1.4996567 2.4994278 3.5037217 4.4931083]
4.493477
[ 6.998398  9.997711 12.991531 16.996109]
16.996109
[1.4941634 2.4994278 3.499199  4.493477 ]
4.493477
[ 6.9929047  9.997711  12.997025  16.995071 ]
16.996109
[1.4941634 2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[1.4996567 2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.9919
[1.4941634 2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.99293
[1.4996567 2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[1.4941634 2.4994278 3.4937057 4.49897  ]
4.493477
[ 6.998398  9.997711 13.388102 12.997025 16.996109]
16.996109
[1.4941634 2.4994278 3.5028913 4.504463  0.9997711]
0.9997711
[2.4994278 3.4937057 4.493477 ]
4.504463
[ 6.998398  9.997711 12.997025 16.990616]
16.996109
[1.4941634 2.4939346 3.504692  4.493477 ]
4.49897
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[1.4996567 2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.991531 16.996109]
16.996109
[2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.990616]
16.994757
[2.4994278 3.504692  4.493477 ]
4.493477
[ 6.9929047  9.992218  12.997025  16.995884 ]
16.996109
[1.4886702 2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.991531 16.996109]
16.996109
[1.4941634 2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.990616]
16.990559
[1.4941634 2.4994278 3.499199  4.493477 ]
4.493477
[ 6.997225  9.992218 12.997025 16.990616]
16.996109
[1.4941634 2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[1.4941634 2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.994709
[2.4994278 3.499199  4.493477 ]
4.493477
[ 6.998398  9.997711 12.991531 16.996109]
16.996109
[2.5005264 3.499199  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.9944  ]
16.996109
[1.4886702 2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.991531 16.996109]
16.996109
[1.4941634 2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[1.4941634 2.4994278 3.4937057 4.493477 ]
4.493477
[ 6.998398  9.997711 13.391405 12.997025 16.996109]
16.99471
[1.4996567 2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[1.4941634 2.4959404 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.995707 16.990616]
16.996454
[2.4994278 3.5038729 4.493477 ]
4.493477
[ 6.997249  9.992218 12.997025 16.992193]
16.996109
[1.4941634 2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[1.4941634 2.4994278 3.4937057 4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[1.4996567 2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.991531 16.996109]
16.996109
[1.4941634 2.4994278 3.5043566 4.4936943]
4.493477
[ 6.998398  9.997711 12.991531 16.990616]
16.996109
[1.4941634 2.4994278 3.499199  4.493477 ]
4.493477
[ 6.9941607  9.992218  12.997025  16.990616 ]
16.996109
[2.4939346 3.5030837 4.493477 ]
4.493477
[ 6.998398  9.992218 12.997025 16.992443]
16.996109
[1.4941634 2.4994278 3.499199  4.493477 ]
4.493477
[ 6.998398  9.997711 12.991531 16.996109]
16.996109
[1.4996567 2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.991531 16.990616]
16.996109
[1.4941634 2.4994278 3.5003133 4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.994404
[1.4886702 2.4994278 3.499199  4.493477 ]
4.493477
[ 6.9972544  9.992218  12.997025  16.990616 ]
16.996109
[1.4941634 2.4994278 3.499199  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.990616]
16.996109
[2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.990978]
16.996109
[1.4886702 2.4994278 3.504191  4.493477 ]
4.493477
[ 6.998398  9.997711 12.991531 16.996109]
16.996109
[1.4886702 2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398   9.997711  13.4127445 12.991531  16.996109 ]
16.996109
[1.4886702 2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 13.385183 12.997025 16.996109]
16.996109
[1.4941634 2.4994278 3.499199  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[1.4941634 2.4994278 3.4985616 4.493477 ]
4.493477
[ 6.998398  9.997711 13.39     12.997025 16.996109]
16.996109
[2.4978158 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.991531 16.996109]
16.996109
[2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.991531 16.996109]
16.996109
[2.4994278 3.504692  4.493477 ]
4.493477
[ 6.9942927  9.997711  12.997025  16.990616 ]
16.996109
[1.4941634 2.4994278 3.499104  4.493477 ]
4.493477
[ 6.998398  9.997711 12.991531 16.990616]
16.992704
[1.4886702 2.4994278 3.5010796 4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.990616]
16.995121
[1.4996567 2.5030854 3.499199  4.49897  ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.993357
[1.4941634 2.4994278 3.4937057 4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.990616]
16.996109
[1.4941634 2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[2.4994278 3.499199  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.9918  ]
16.996109
[1.4886702 2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.990616]
16.990616
[1.4941634 2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[1.4886702 2.4939346 3.504692  4.49449  ]
4.493477
[ 6.998398  9.997711 12.991531 16.996109]
16.996109
[1.4996567 2.4994278 3.499199  4.493477 ]
4.493477
[ 6.998398  9.997711 12.991531 16.996109]
16.996109
[1.4941634 2.4939346 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[2.4994278 3.5008304 4.49897  ]
4.49897
[ 6.998398   9.997711  12.9962015 16.992403 ]
16.996109
[1.4996567 2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[1.4886702 2.4994278 3.500575  4.493477 ]
4.493477
[ 6.998398  9.997711 13.389138 12.997025 16.996109]
16.996109
[1.4886702 2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.991531 16.996109]
16.996109
[1.4916481 2.4994278 3.5014722 4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[2.4994278 3.499199  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[2.4996443 3.5006905 4.49897  ]
4.49897
[ 6.998398  9.997711 12.997025 16.990616]
16.996109
[2.4994278 3.499199  4.493477 ]
4.493477
[ 6.998398  9.992218 12.997025 16.990616]
16.996109
[1.4886702 2.4994278 3.504692  4.493477 ]
4.493477
[6.9874115 0.9997711]
0.9997711
[2.504921  3.4937057 4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.991888]
16.996109
[1.4996567 2.4994278 3.504692  4.493477 ]
4.493477
[ 6.997709  9.997711 12.991531 16.996109]
16.996109
[1.4886702 2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[1.4941634 2.4994278 3.499199  4.493477 ]
4.493477
[ 6.998398  9.997711 12.991531 16.996109]
16.996109
[2.4994278 3.5030675 4.493477 ]
4.493477
[ 6.998398  9.997711 12.991531 16.996109]
16.996109
[2.4994278 3.5002973 4.493477 ]
4.493477
[ 6.9945493  9.988707  12.99587   16.99381  ]
16.996109
[1.4941634 2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[1.4886702 2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 13.391599 12.991531 16.996109]
16.996109
[1.4887204 2.4994278 3.504692  4.493523 ]
4.493477
[ 6.998398  9.997711 12.991531 16.996109]
16.996109
[1.4941634 2.4994278 3.499199  4.493477 ]
4.493477
[ 6.998398  9.997711 13.384739 12.991531 16.993145]
16.991007
[1.4941634 2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.990616]
16.990616
[2.4994278 3.499199  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[2.4994278 3.499199  4.491991 ]
4.493477
[ 6.998398  9.997711 12.997025 16.995358]
16.996109
[1.4886702 2.4994278 3.4937057 4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.995974
[1.4996567 2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.991531 16.990616]
16.996109
[1.4886702 2.4994278 3.499199  4.493477 ]
4.493477
[ 6.998398  9.997461 12.997025 16.996109]
16.993555
[1.4996567 2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 13.39253  12.997025 16.996109]
16.996109
[1.4941634 2.4939346 3.4937057 4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 17.000694]
16.996109
[2.4994278 3.504692  4.493477 ]
4.493477
[ 6.9929047  9.997711  12.997025  16.996109 ]
16.996109
[2.494398  3.504692  4.4879837]
4.493477
[ 6.998398  9.997711 13.397216 12.997025 16.990616]
16.996109
[2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[2.4994278 3.504692  4.49897  ]
4.49897
[ 6.9929047  9.997711  12.991531  16.996109 ]
16.996109
[2.4994278 3.499199  4.4934063]
4.493477
[ 6.998398  9.997711 13.386089 12.991531 16.996109]
16.996109
[2.4994278 3.504692  4.491533 ]
4.493477
[ 6.998398  9.997711 13.412965 12.991531 16.990616]
16.996109
[2.504921 3.504692 4.493477]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[2.4994278 3.50274   4.493477 ]
4.493477
[ 6.9929047  9.997711  12.991531  16.996109 ]
16.996109
[2.4939346 3.504692  4.493477 ]
4.493477
[ 6.9929047  9.997711  12.991531  16.996109 ]
16.996109
[2.4998555 3.5033114 4.491474 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[2.4939346 3.504692  4.4910207]
4.493477
[ 6.998398  9.997711 13.374861 12.997025 16.996109]
16.996109
[2.4994278 3.499199  4.493477 ]
4.493477
[ 6.9929047  9.997711  12.991531  16.996109 ]
16.996109
[2.4994278 3.499199  4.49897  ]
4.49897
[ 6.9973364  9.997711  12.9956455 16.990616 ]
16.996109
[1.4886702 2.4970424 3.504692  4.493477 ]
4.493477
[ 6.9929047  9.997711  12.991531  16.990616 ]
16.990616
[1.4924439 2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[1.4886702 2.4994278 3.5036151 4.493477 ]
4.493477
[ 6.9929047  9.997711  12.997025  16.996109 ]
16.996109
[1.4941634 2.4994278 3.504692  4.4929338]
4.4879837
[ 6.998398  9.997325 12.997025 16.990616]
16.996109
[1.4886702 2.504921  3.5000856 4.493477 ]
4.493477
[ 6.998398  9.997711 13.392853 12.997025 16.996109]
16.996109
[2.4994278 3.5026681 4.493078 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[2.504921  3.5027192 4.4879837]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[2.4994278 3.5005472 4.49897  ]
4.49897
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[2.4994278 3.504692  4.493477 ]
4.493477
[ 6.9929047  9.992218  12.991531  16.990616 ]
16.996109
[2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.991531 16.990616]
16.996109
[2.4994278 3.504692  4.49897  ]
4.49897
[ 6.998398  9.997711 12.997025 16.992266]
16.996109
[1.4886702 2.4994278 3.5028405 4.493477 ]
4.493477
[ 6.998398  9.997711 12.991531 16.996109]
16.996109
[1.4886702 2.5024483 3.504692  4.4910913]
4.493477
[ 6.998398  9.997711 12.997025 16.996109]
16.996109
[1.4941634 2.5025089 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.997025 16.990616]
16.99205
[1.4906286 2.4994278 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.991531 16.990616]
16.994165
[1.4941634 2.5045285 3.504692  4.493477 ]
4.493477
[ 6.998398  9.997711 12.991531 16.996109]
16.995588
[2.4994278 3.501567  4.4894013]
4.493477
<Figure size 800x1500 with 10 Axes><Figure size 800x1500 with 10 Axes>