MITgcm ECCOv4 Example¶
Overview¶
This Jupyter notebook demonstrates how to use xarray and xgcm to analyze data from the ECCO v4r3 ocean state estimate.
Loading ECCO zarr data and converting to an xarray dataset
Visualize ocean depth using cartopy
Indexing and selecting data using xarray
Use dask cluster to speed up reading the data
Calculate and plot the horizontally integrated heat content anomaly
Use xgcm to compute the time-mean convergence of veritcally-integrated heat fluxes
Prerequisites¶
Concepts | Importance | Notes |
---|---|---|
Intro to Cartopy | Helpful | |
Xarray | Helpful | Slicing, indexing, basic statistics |
Dask | Helpful |
Time to learn: 1 hour
Imports¶
import xarray as xr
import numpy as np
from matplotlib import pyplot as plt
%matplotlib inline
import intake
import cartopy as cart
import pyresample
from dask_gateway import GatewayCluster
from dask.distributed import Client
import xgcm
Load the data¶
The ECCOv4r3 data was converted from its raw MDS (.data / .meta file) format to zarr format, using the xmitgcm package. Zarr is a powerful data storage format that can be thought of as an alternative to HDF. In contrast to HDF, zarr works very well with cloud object storage. Zarr is currently useable in python, java, C++, and julia. It is likely that zarr will form the basis of the next major version of the netCDF library.
If you’re curious, here are some resources to learn more about zarr:
https://
speakerdeck .com /rabernat /pangeo -zarr -cloud -data -storage https://
mrocklin .github .com /blog /work /2018 /02 /06 /hdf -in -the -cloud
The ECCO zarr data currently lives in Google Cloud Storage as part of the Pangeo Data Catalog. This means we can open the whole dataset using one line of code.
This takes a bit of time to run because the metadata must be downloaded and parsed. The type of object returned is an Xarray dataset.
cat = intake.open_catalog("https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/ocean.yaml")
ds = cat.ECCOv4r3.to_dask()
ds
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[2], line 2
1 cat = intake.open_catalog("https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/ocean.yaml")
----> 2 ds = cat.ECCOv4r3.to_dask()
3 ds
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/intake_xarray/base.py:8, in IntakeXarraySourceAdapter.to_dask(self)
6 def to_dask(self):
7 if "chunks" not in self.reader.kwargs:
----> 8 return self.reader(chunks={}).read()
9 else:
10 return self.reader.read()
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/intake/readers/readers.py:121, in BaseReader.read(self, *args, **kwargs)
119 kw.update(kwargs)
120 args = kw.pop("args", ()) or args
--> 121 return self._read(*args, **kw)
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/intake/readers/readers.py:1327, in XArrayDatasetReader._read(self, data, open_local, **kw)
1325 f = fsspec.open(data.url, **(data.storage_options or {})).open()
1326 return open_dataset(f, **kw)
-> 1327 return open_dataset(data.url, **kw)
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/xarray/backends/api.py:760, in open_dataset(filename_or_obj, engine, chunks, cache, decode_cf, mask_and_scale, decode_times, decode_timedelta, use_cftime, concat_characters, decode_coords, drop_variables, create_default_indexes, inline_array, chunked_array_type, from_array_kwargs, backend_kwargs, **kwargs)
748 decoders = _resolve_decoders_kwargs(
749 decode_cf,
750 open_backend_dataset_parameters=backend.open_dataset_parameters,
(...) 756 decode_coords=decode_coords,
757 )
759 overwrite_encoded_chunks = kwargs.pop("overwrite_encoded_chunks", None)
--> 760 backend_ds = backend.open_dataset(
761 filename_or_obj,
762 drop_variables=drop_variables,
763 **decoders,
764 **kwargs,
765 )
766 ds = _dataset_from_backend_dataset(
767 backend_ds,
768 filename_or_obj,
(...) 779 **kwargs,
780 )
781 return ds
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/xarray/backends/zarr.py:1654, in ZarrBackendEntrypoint.open_dataset(self, filename_or_obj, mask_and_scale, decode_times, concat_characters, decode_coords, drop_variables, use_cftime, decode_timedelta, group, mode, synchronizer, consolidated, chunk_store, storage_options, zarr_version, zarr_format, store, engine, use_zarr_fill_value_as_mask, cache_members)
1652 filename_or_obj = _normalize_path(filename_or_obj)
1653 if not store:
-> 1654 store = ZarrStore.open_group(
1655 filename_or_obj,
1656 group=group,
1657 mode=mode,
1658 synchronizer=synchronizer,
1659 consolidated=consolidated,
1660 consolidate_on_close=False,
1661 chunk_store=chunk_store,
1662 storage_options=storage_options,
1663 zarr_version=zarr_version,
1664 use_zarr_fill_value_as_mask=None,
1665 zarr_format=zarr_format,
1666 cache_members=cache_members,
1667 )
1669 store_entrypoint = StoreBackendEntrypoint()
1670 with close_on_error(store):
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/xarray/backends/zarr.py:714, in ZarrStore.open_group(cls, store, mode, synchronizer, group, consolidated, consolidate_on_close, chunk_store, storage_options, append_dim, write_region, safe_chunks, align_chunks, zarr_version, zarr_format, use_zarr_fill_value_as_mask, write_empty, cache_members)
688 @classmethod
689 def open_group(
690 cls,
(...) 707 cache_members: bool = True,
708 ):
709 (
710 zarr_group,
711 consolidate_on_close,
712 close_store_on_close,
713 use_zarr_fill_value_as_mask,
--> 714 ) = _get_open_params(
715 store=store,
716 mode=mode,
717 synchronizer=synchronizer,
718 group=group,
719 consolidated=consolidated,
720 consolidate_on_close=consolidate_on_close,
721 chunk_store=chunk_store,
722 storage_options=storage_options,
723 zarr_version=zarr_version,
724 use_zarr_fill_value_as_mask=use_zarr_fill_value_as_mask,
725 zarr_format=zarr_format,
726 )
728 return cls(
729 zarr_group,
730 mode,
(...) 739 cache_members=cache_members,
740 )
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/xarray/backends/zarr.py:1858, in _get_open_params(store, mode, synchronizer, group, consolidated, consolidate_on_close, chunk_store, storage_options, zarr_version, use_zarr_fill_value_as_mask, zarr_format)
1854 group = open_kwargs.pop("path")
1856 if consolidated:
1857 # TODO: an option to pass the metadata_key keyword
-> 1858 zarr_root_group = zarr.open_consolidated(store, **open_kwargs)
1859 elif consolidated is None:
1860 # same but with more error handling in case no consolidated metadata found
1861 try:
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/zarr/api/synchronous.py:231, in open_consolidated(use_consolidated, *args, **kwargs)
226 def open_consolidated(*args: Any, use_consolidated: Literal[True] = True, **kwargs: Any) -> Group:
227 """
228 Alias for :func:`open_group` with ``use_consolidated=True``.
229 """
230 return Group(
--> 231 sync(async_api.open_consolidated(*args, use_consolidated=use_consolidated, **kwargs))
232 )
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/zarr/core/sync.py:163, in sync(coro, loop, timeout)
160 return_result = next(iter(finished)).result()
162 if isinstance(return_result, BaseException):
--> 163 raise return_result
164 else:
165 return return_result
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/zarr/core/sync.py:119, in _runner(coro)
114 """
115 Await a coroutine and return the result of running it. If awaiting the coroutine raises an
116 exception, the exception will be returned.
117 """
118 try:
--> 119 return await coro
120 except Exception as ex:
121 return ex
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/zarr/api/asynchronous.py:408, in open_consolidated(use_consolidated, *args, **kwargs)
403 if use_consolidated is not True:
404 raise TypeError(
405 "'use_consolidated' must be 'True' in 'open_consolidated'. Use 'open' with "
406 "'use_consolidated=False' to bypass consolidated metadata."
407 )
--> 408 return await open_group(*args, use_consolidated=use_consolidated, **kwargs)
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/zarr/api/asynchronous.py:857, in open_group(store, mode, cache_attrs, synchronizer, path, chunk_store, storage_options, zarr_version, zarr_format, meta_array, attributes, use_consolidated)
855 try:
856 if mode in _READ_MODES:
--> 857 return await AsyncGroup.open(
858 store_path, zarr_format=zarr_format, use_consolidated=use_consolidated
859 )
860 except (KeyError, FileNotFoundError):
861 pass
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/zarr/core/group.py:559, in AsyncGroup.open(cls, store, zarr_format, use_consolidated)
552 raise FileNotFoundError(store_path)
553 elif zarr_format is None:
554 (
555 zarr_json_bytes,
556 zgroup_bytes,
557 zattrs_bytes,
558 maybe_consolidated_metadata_bytes,
--> 559 ) = await asyncio.gather(
560 (store_path / ZARR_JSON).get(),
561 (store_path / ZGROUP_JSON).get(),
562 (store_path / ZATTRS_JSON).get(),
563 (store_path / str(consolidated_key)).get(),
564 )
565 if zarr_json_bytes is not None and zgroup_bytes is not None:
566 # warn and favor v3
567 msg = f"Both zarr.json (Zarr format 3) and .zgroup (Zarr format 2) metadata objects exist at {store_path}. Zarr format 3 will be used."
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/zarr/storage/_common.py:168, in StorePath.get(self, prototype, byte_range)
166 if prototype is None:
167 prototype = default_buffer_prototype()
--> 168 return await self.store.get(self.path, prototype=prototype, byte_range=byte_range)
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/zarr/storage/_fsspec.py:299, in FsspecStore.get(self, key, prototype, byte_range)
297 try:
298 if byte_range is None:
--> 299 value = prototype.buffer.from_bytes(await self.fs._cat_file(path))
300 elif isinstance(byte_range, RangeByteRequest):
301 value = prototype.buffer.from_bytes(
302 await self.fs._cat_file(
303 path,
(...) 306 )
307 )
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/gcsfs/core.py:1119, in GCSFileSystem._cat_file(self, path, start, end, **kwargs)
1117 else:
1118 head = {}
-> 1119 headers, out = await self._call("GET", u2, headers=head)
1120 return out
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/gcsfs/core.py:483, in GCSFileSystem._call(self, method, path, json_out, info_out, *args, **kwargs)
479 async def _call(
480 self, method, path, *args, json_out=False, info_out=False, **kwargs
481 ):
482 logger.debug(f"{method.upper()}: {path}, {args}, {kwargs.get('headers')}")
--> 483 status, headers, info, contents = await self._request(
484 method, path, *args, **kwargs
485 )
486 if json_out:
487 return json.loads(contents)
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/decorator.py:224, in decorate.<locals>.fun(*args, **kw)
222 if not kwsyntax:
223 args, kw = fix(args, kw, sig)
--> 224 return await caller(func, *(extras + args), **kw)
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/gcsfs/retry.py:135, in retry_request(func, retries, *args, **kwargs)
133 if retry > 0:
134 await asyncio.sleep(min(random.random() + 2 ** (retry - 1), 32))
--> 135 return await func(*args, **kwargs)
136 except (
137 HttpError,
138 requests.exceptions.RequestException,
(...) 141 aiohttp.client_exceptions.ClientError,
142 ) as e:
143 if (
144 isinstance(e, HttpError)
145 and e.code == 400
146 and "requester pays" in e.message
147 ):
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/gcsfs/core.py:476, in GCSFileSystem._request(self, method, path, headers, json, data, *args, **kwargs)
473 info = r.request_info # for debug only
474 contents = await r.read()
--> 476 validate_response(status, contents, path, args)
477 return status, headers, info, contents
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/gcsfs/retry.py:120, in validate_response(status, content, path, args)
118 raise requests.exceptions.ProxyError()
119 elif "invalid" in str(msg):
--> 120 raise ValueError(f"Bad Request: {path}\n{msg}")
121 elif error and not isinstance(error, str):
122 raise HttpError(error)
ValueError: Bad Request: https://storage.googleapis.com/download/storage/v1/b/pangeo-ecco-eccov4r3/o/eccov4r3%2F.zattrs?alt=media
User project specified in the request is invalid.
Note that no data has been actually download yet. Xarray uses the approach of lazy evaluation, in which loading of data and execution of computations is delayed as long as possible (i.e. until data is actually needed for a plot). The data are represented symbolically as dask arrays. For example:
SALT (time, k, face, j, i) float32 dask.array<shape=(288, 50, 13, 90, 90), chunksize=(1, 50, 13, 90, 90)>
The full shape of the array is (288, 50, 13, 90, 90), quite large. But the chunksize is (1, 50, 13, 90, 90). Here the chunks correspond to the individual granuales of data (objects) in cloud storage. The chunk is the minimum amount of data we can read at one time.
# a trick to make things work a bit faster
coords = ds.coords.to_dataset().reset_coords()
ds = ds.reset_coords(drop=True)
Visualizing Data¶
A Direct Plot¶
Let’s try to visualize something simple: the Depth
variable. Here is how the data are stored:
Depth (face, j, i) float32 dask.array<shape=(13, 90, 90), chunksize=(13, 90, 90)>
Although depth is a 2D field, there is an extra, dimension (face
) corresponding to the LLC face number. Let’s use xarray’s built in plotting functions to plot each face individually.
coords.Depth.plot(col='face', col_wrap=5)
This view is not the most useful. It reflects how the data is arranged logically, rather than geographically.
A Pretty Map¶
To make plotting easier, we can define a quick function to plot the data in a more geographically friendly way. Eventually these plotting functions may be provided by the gcmplots package: https://
class LLCMapper:
def __init__(self, ds, dx=0.25, dy=0.25):
# Extract LLC 2D coordinates
lons_1d = ds.XC.values.ravel()
lats_1d = ds.YC.values.ravel()
# Define original grid
self.orig_grid = pyresample.geometry.SwathDefinition(lons=lons_1d, lats=lats_1d)
# Longitudes latitudes to which we will we interpolate
lon_tmp = np.arange(-180, 180, dx) + dx/2
lat_tmp = np.arange(-90, 90, dy) + dy/2
# Define the lat lon points of the two parts.
self.new_grid_lon, self.new_grid_lat = np.meshgrid(lon_tmp, lat_tmp)
self.new_grid = pyresample.geometry.GridDefinition(lons=self.new_grid_lon,
lats=self.new_grid_lat)
def __call__(self, da, ax=None, projection=cart.crs.Robinson(), lon_0=-60, **plt_kwargs):
assert set(da.dims) == set(['face', 'j', 'i']), "da must have dimensions ['face', 'j', 'i']"
if ax is None:
fig, ax = plt.subplots(figsize=(12, 6), subplot_kw={'projection': projection})
else:
m = plt.axes(projection=projection)
field = pyresample.kd_tree.resample_nearest(self.orig_grid, da.values,
self.new_grid,
radius_of_influence=100000,
fill_value=None)
vmax = plt_kwargs.pop('vmax', field.max())
vmin = plt_kwargs.pop('vmin', field.min())
x,y = self.new_grid_lon, self.new_grid_lat
# Find index where data is splitted for mapping
split_lon_idx = round(x.shape[1]/(360/(lon_0 if lon_0>0 else lon_0+360)))
p = ax.pcolormesh(x[:,:split_lon_idx], y[:,:split_lon_idx], field[:,:split_lon_idx],
vmax=vmax, vmin=vmin, transform=cart.crs.PlateCarree(), zorder=1, **plt_kwargs)
p = ax.pcolormesh(x[:,split_lon_idx:], y[:,split_lon_idx:], field[:,split_lon_idx:],
vmax=vmax, vmin=vmin, transform=cart.crs.PlateCarree(), zorder=2, **plt_kwargs)
ax.add_feature(cart.feature.LAND, facecolor='0.5', zorder=3)
label = ''
if da.name is not None:
label = da.name
if 'units' in da.attrs:
label += ' [%s]' % da.attrs['units']
cb = plt.colorbar(p, shrink=0.4, label=label)
return ax
mapper = LLCMapper(coords)
mapper(coords.Depth);
We can use this with any 2D cell-centered LLC variable.
Selecting data¶
The entire ECCOv4e3 dataset is contained in a single Xarray.Dataset
object. How do we find a view specific pieces of data? This is handled by Xarray’s indexing and selecting functions. To get the SST from January 2000, we do this:
sst = ds.THETA.sel(time='2000-01-15', k=0)
sst
Still no data has been actually downloaded. That doesn’t happen until we call .load()
explicitly or try to make a plot.
mapper(sst, cmap='RdBu_r');
Do some Calculations¶
Now let’s start doing something besides just plotting the existing data. For example, let’s calculate the time-mean SST.
mean_sst = ds.THETA.sel(k=0).mean(dim='time')
mean_sst
As usual, no data was loaded. Instead, mean_sst
is a symbolic representation of the data that needs to be pulled and the computations that need to be executed to produce the desired result. In this case, the 288 original chunks all need to be read from cloud storage. Dask coordinates this automatically for us. But it does take some time.
%time mean_sst.load()
mapper(mean_sst, cmap='RdBu_r');
Speeding things up with a Dask Cluster¶
How can we speed things up? In general, the main bottleneck for this type of data analysis is the speed with which we can read the data. With cloud storage, the access is highly parallelizeable.
From a Pangeo environment, we can create a Dask cluster to spread the work out amongst many compute nodes. This works on both HPC and cloud. In the cloud, the compute nodes are provisioned on the fly and can be shut down as soon as we are done with our analysis.
The code below will create a cluster with five compute nodes. It can take a few minutes to provision our nodes.
cluster = GatewayCluster()
cluster.scale(5)
client = Client(cluster)
cluster
Now we re-run the mean calculation. Note how the dashboard helps us visualize what the cluster is doing.
%time ds.THETA.isel(k=0).mean(dim='time').load()
Spatially-Integrated Heat Content Anomaly¶
Now let’s do something harder. We will calculate the horizontally integrated heat content anomaly for the full 3D model domain.
# the monthly climatology
theta_clim = ds.THETA.groupby('time.month').mean(dim='time')
# the anomaly
theta_anom = ds.THETA.groupby('time.month') - theta_clim
rho0 = 1029
cp = 3994
ohc = rho0 * cp * (theta_anom *
coords.rA *
coords.hFacC).sum(dim=['face', 'j', 'i'])
ohc
# actually load the data
ohc.load()
# put the depth coordinate back for plotting purposes
ohc.coords['Z'] = coords.Z
ohc.swap_dims({'k': 'Z'}).transpose().plot(vmax=1e20)
Spatial Derivatives: Heat Budget¶
As our final exercise, we will do something much more complicated. We will compute the time-mean convergence of vertically-integrated heat fluxes. This is hard for several reasons.
The first reason it is hard is because it involves variables located at different grid points.
Following MITgcm conventions, xmitgcm (which produced this dataset) labels the center point with the coordinates j, i
, the u-velocity point as j, i_g
, and the v-velocity point as j_g, i
.
The horizontal advective heat flux variables are
ADVx_TH (time, k, face, j, i_g) float32 dask.array<shape=(288, 50, 13, 90, 90), chunksize=(1, 50, 13, 90, 90)>
ADVy_TH (time, k, face, j_g, i) float32 dask.array<shape=(288, 50, 13, 90, 90), chunksize=(1, 50, 13, 90, 90)>
Xarray won’t allow us to add or multiply variables that have different dimensions, and xarray by itself doesn’t understand how to transform from one grid position to another.
That’s why xgcm was created.
Xgcm allows us to create a Grid
object, which understands how to interpolate and take differences in a way that is compatible with finite volume models such at MITgcm. Xgcm also works with many other models, including ROMS, POP, MOM5/6, NEMO, etc.
A second reason this is hard is because of the complex topology connecting the different MITgcm faces. Fortunately xgcm also supports this.
# define the connectivity between faces
face_connections = {'face':
{0: {'X': ((12, 'Y', False), (3, 'X', False)),
'Y': (None, (1, 'Y', False))},
1: {'X': ((11, 'Y', False), (4, 'X', False)),
'Y': ((0, 'Y', False), (2, 'Y', False))},
2: {'X': ((10, 'Y', False), (5, 'X', False)),
'Y': ((1, 'Y', False), (6, 'X', False))},
3: {'X': ((0, 'X', False), (9, 'Y', False)),
'Y': (None, (4, 'Y', False))},
4: {'X': ((1, 'X', False), (8, 'Y', False)),
'Y': ((3, 'Y', False), (5, 'Y', False))},
5: {'X': ((2, 'X', False), (7, 'Y', False)),
'Y': ((4, 'Y', False), (6, 'Y', False))},
6: {'X': ((2, 'Y', False), (7, 'X', False)),
'Y': ((5, 'Y', False), (10, 'X', False))},
7: {'X': ((6, 'X', False), (8, 'X', False)),
'Y': ((5, 'X', False), (10, 'Y', False))},
8: {'X': ((7, 'X', False), (9, 'X', False)),
'Y': ((4, 'X', False), (11, 'Y', False))},
9: {'X': ((8, 'X', False), None),
'Y': ((3, 'X', False), (12, 'Y', False))},
10: {'X': ((6, 'Y', False), (11, 'X', False)),
'Y': ((7, 'Y', False), (2, 'X', False))},
11: {'X': ((10, 'X', False), (12, 'X', False)),
'Y': ((8, 'Y', False), (1, 'X', False))},
12: {'X': ((11, 'X', False), None),
'Y': ((9, 'Y', False), (0, 'X', False))}}}
# create the grid object
grid = xgcm.Grid(ds, periodic=False, face_connections=face_connections)
grid
Now we can use the grid
object we created to take the divergence of a 2D vector
# vertical integral and time mean of horizontal diffusive heat flux
advx_th_vint = ds.ADVx_TH.sum(dim='k').mean(dim='time')
advy_th_vint = ds.ADVy_TH.sum(dim='k').mean(dim='time')
# difference in the x and y directions
diff_ADV_th = grid.diff_2d_vector({'X': advx_th_vint, 'Y': advy_th_vint}, boundary='fill')
# convergence
conv_ADV_th = -diff_ADV_th['X'] - diff_ADV_th['Y']
conv_ADV_th
# vertical integral and time mean of horizontal diffusive heat flux
difx_th_vint = ds.DFxE_TH.sum(dim='k').mean(dim='time')
dify_th_vint = ds.DFyE_TH.sum(dim='k').mean(dim='time')
# difference in the x and y directions
diff_DIF_th = grid.diff_2d_vector({'X': difx_th_vint, 'Y': dify_th_vint}, boundary='fill')
# convergence
conv_DIF_th = -diff_DIF_th['X'] - diff_DIF_th['Y']
conv_DIF_th
# convert to Watts / m^2 and load
mean_adv_conv = rho0 * cp * (conv_ADV_th/coords.rA).fillna(0.).load()
mean_dif_conv = rho0 * cp * (conv_DIF_th/coords.rA).fillna(0.).load()
ax = mapper(mean_adv_conv, cmap='RdBu_r', vmax=300, vmin=-300);
ax.set_title(r'Convergence of Advective Flux (W/m$^2$)');
ax = mapper(mean_dif_conv, cmap='RdBu_r', vmax=300, vmin=-300)
ax.set_title(r'Convergence of Diffusive Flux (W/m$^2$)');
ax = mapper(mean_dif_conv + mean_adv_conv, cmap='RdBu_r', vmax=300, vmin=-300)
ax.set_title(r'Convergence of Net Horizontal Flux (W/m$^2$)');
ax = mapper(ds.TFLUX.mean(dim='time').load(), cmap='RdBu_r', vmax=300, vmin=-300);
ax.set_title(r'Surface Heat Flux (W/m$^2$)');
Summary¶
In this example we used xarray and cartopy to visualize ocean depth and ocean heat content anomalies. Then, we used xgcm to easily work with variables that have different dimensions.
What’s next?¶
In our last example, we will visualize ocean currents.
Resources and references¶
This notebook is based on the ECCOv4 example from the Pangeo physical oceanography gallery: http://
gallery .pangeo .io /repos /pangeo -gallery /physical -oceanography /04 _eccov4 .html