For this example we will use gridded sea-surface altimetry data from The Copernicus Marine Environment. This is a widely used dataset in physical oceanography and climate.
The dataset has been extracted from Copernicus and stored in google cloud storage in xarray-zarr format. It is catalogues in the Pangeo Cloud Catalog at https://
import numpy as np
import xarray as xr
import matplotlib.pyplot as plt
import hvplot.xarray
plt.rcParams['figure.figsize'] = (15,10)
%matplotlib inline
Initialize Dataset¶
Here we load the dataset from the zarr store. Note that this very large dataset initializes nearly instantly, and we can see the full list of variables and coordinates, including metadata for each variable.
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/ocean.yaml")
ds = cat["sea_surface_height"].to_dask()
ds
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[2], line 3
1 from intake import open_catalog
2 cat = open_catalog("https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/ocean.yaml")
----> 3 ds = cat["sea_surface_height"].to_dask()
4 ds
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/intake_xarray/base.py:8, in IntakeXarraySourceAdapter.to_dask(self)
6 def to_dask(self):
7 if "chunks" not in self.reader.kwargs:
----> 8 return self.reader(chunks={}).read()
9 else:
10 return self.reader.read()
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/intake/readers/readers.py:121, in BaseReader.read(self, *args, **kwargs)
119 kw.update(kwargs)
120 args = kw.pop("args", ()) or args
--> 121 return self._read(*args, **kw)
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/intake/readers/readers.py:1327, in XArrayDatasetReader._read(self, data, open_local, **kw)
1325 f = fsspec.open(data.url, **(data.storage_options or {})).open()
1326 return open_dataset(f, **kw)
-> 1327 return open_dataset(data.url, **kw)
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/xarray/backends/api.py:760, in open_dataset(filename_or_obj, engine, chunks, cache, decode_cf, mask_and_scale, decode_times, decode_timedelta, use_cftime, concat_characters, decode_coords, drop_variables, create_default_indexes, inline_array, chunked_array_type, from_array_kwargs, backend_kwargs, **kwargs)
748 decoders = _resolve_decoders_kwargs(
749 decode_cf,
750 open_backend_dataset_parameters=backend.open_dataset_parameters,
(...) 756 decode_coords=decode_coords,
757 )
759 overwrite_encoded_chunks = kwargs.pop("overwrite_encoded_chunks", None)
--> 760 backend_ds = backend.open_dataset(
761 filename_or_obj,
762 drop_variables=drop_variables,
763 **decoders,
764 **kwargs,
765 )
766 ds = _dataset_from_backend_dataset(
767 backend_ds,
768 filename_or_obj,
(...) 779 **kwargs,
780 )
781 return ds
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/xarray/backends/zarr.py:1654, in ZarrBackendEntrypoint.open_dataset(self, filename_or_obj, mask_and_scale, decode_times, concat_characters, decode_coords, drop_variables, use_cftime, decode_timedelta, group, mode, synchronizer, consolidated, chunk_store, storage_options, zarr_version, zarr_format, store, engine, use_zarr_fill_value_as_mask, cache_members)
1652 filename_or_obj = _normalize_path(filename_or_obj)
1653 if not store:
-> 1654 store = ZarrStore.open_group(
1655 filename_or_obj,
1656 group=group,
1657 mode=mode,
1658 synchronizer=synchronizer,
1659 consolidated=consolidated,
1660 consolidate_on_close=False,
1661 chunk_store=chunk_store,
1662 storage_options=storage_options,
1663 zarr_version=zarr_version,
1664 use_zarr_fill_value_as_mask=None,
1665 zarr_format=zarr_format,
1666 cache_members=cache_members,
1667 )
1669 store_entrypoint = StoreBackendEntrypoint()
1670 with close_on_error(store):
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/xarray/backends/zarr.py:714, in ZarrStore.open_group(cls, store, mode, synchronizer, group, consolidated, consolidate_on_close, chunk_store, storage_options, append_dim, write_region, safe_chunks, align_chunks, zarr_version, zarr_format, use_zarr_fill_value_as_mask, write_empty, cache_members)
688 @classmethod
689 def open_group(
690 cls,
(...) 707 cache_members: bool = True,
708 ):
709 (
710 zarr_group,
711 consolidate_on_close,
712 close_store_on_close,
713 use_zarr_fill_value_as_mask,
--> 714 ) = _get_open_params(
715 store=store,
716 mode=mode,
717 synchronizer=synchronizer,
718 group=group,
719 consolidated=consolidated,
720 consolidate_on_close=consolidate_on_close,
721 chunk_store=chunk_store,
722 storage_options=storage_options,
723 zarr_version=zarr_version,
724 use_zarr_fill_value_as_mask=use_zarr_fill_value_as_mask,
725 zarr_format=zarr_format,
726 )
728 return cls(
729 zarr_group,
730 mode,
(...) 739 cache_members=cache_members,
740 )
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/xarray/backends/zarr.py:1858, in _get_open_params(store, mode, synchronizer, group, consolidated, consolidate_on_close, chunk_store, storage_options, zarr_version, use_zarr_fill_value_as_mask, zarr_format)
1854 group = open_kwargs.pop("path")
1856 if consolidated:
1857 # TODO: an option to pass the metadata_key keyword
-> 1858 zarr_root_group = zarr.open_consolidated(store, **open_kwargs)
1859 elif consolidated is None:
1860 # same but with more error handling in case no consolidated metadata found
1861 try:
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/zarr/api/synchronous.py:231, in open_consolidated(use_consolidated, *args, **kwargs)
226 def open_consolidated(*args: Any, use_consolidated: Literal[True] = True, **kwargs: Any) -> Group:
227 """
228 Alias for :func:`open_group` with ``use_consolidated=True``.
229 """
230 return Group(
--> 231 sync(async_api.open_consolidated(*args, use_consolidated=use_consolidated, **kwargs))
232 )
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/zarr/core/sync.py:163, in sync(coro, loop, timeout)
160 return_result = next(iter(finished)).result()
162 if isinstance(return_result, BaseException):
--> 163 raise return_result
164 else:
165 return return_result
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/zarr/core/sync.py:119, in _runner(coro)
114 """
115 Await a coroutine and return the result of running it. If awaiting the coroutine raises an
116 exception, the exception will be returned.
117 """
118 try:
--> 119 return await coro
120 except Exception as ex:
121 return ex
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/zarr/api/asynchronous.py:408, in open_consolidated(use_consolidated, *args, **kwargs)
403 if use_consolidated is not True:
404 raise TypeError(
405 "'use_consolidated' must be 'True' in 'open_consolidated'. Use 'open' with "
406 "'use_consolidated=False' to bypass consolidated metadata."
407 )
--> 408 return await open_group(*args, use_consolidated=use_consolidated, **kwargs)
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/zarr/api/asynchronous.py:857, in open_group(store, mode, cache_attrs, synchronizer, path, chunk_store, storage_options, zarr_version, zarr_format, meta_array, attributes, use_consolidated)
855 try:
856 if mode in _READ_MODES:
--> 857 return await AsyncGroup.open(
858 store_path, zarr_format=zarr_format, use_consolidated=use_consolidated
859 )
860 except (KeyError, FileNotFoundError):
861 pass
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/zarr/core/group.py:559, in AsyncGroup.open(cls, store, zarr_format, use_consolidated)
552 raise FileNotFoundError(store_path)
553 elif zarr_format is None:
554 (
555 zarr_json_bytes,
556 zgroup_bytes,
557 zattrs_bytes,
558 maybe_consolidated_metadata_bytes,
--> 559 ) = await asyncio.gather(
560 (store_path / ZARR_JSON).get(),
561 (store_path / ZGROUP_JSON).get(),
562 (store_path / ZATTRS_JSON).get(),
563 (store_path / str(consolidated_key)).get(),
564 )
565 if zarr_json_bytes is not None and zgroup_bytes is not None:
566 # warn and favor v3
567 msg = f"Both zarr.json (Zarr format 3) and .zgroup (Zarr format 2) metadata objects exist at {store_path}. Zarr format 3 will be used."
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/zarr/storage/_common.py:168, in StorePath.get(self, prototype, byte_range)
166 if prototype is None:
167 prototype = default_buffer_prototype()
--> 168 return await self.store.get(self.path, prototype=prototype, byte_range=byte_range)
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/zarr/storage/_fsspec.py:299, in FsspecStore.get(self, key, prototype, byte_range)
297 try:
298 if byte_range is None:
--> 299 value = prototype.buffer.from_bytes(await self.fs._cat_file(path))
300 elif isinstance(byte_range, RangeByteRequest):
301 value = prototype.buffer.from_bytes(
302 await self.fs._cat_file(
303 path,
(...) 306 )
307 )
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/gcsfs/core.py:1119, in GCSFileSystem._cat_file(self, path, start, end, **kwargs)
1117 else:
1118 head = {}
-> 1119 headers, out = await self._call("GET", u2, headers=head)
1120 return out
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/gcsfs/core.py:483, in GCSFileSystem._call(self, method, path, json_out, info_out, *args, **kwargs)
479 async def _call(
480 self, method, path, *args, json_out=False, info_out=False, **kwargs
481 ):
482 logger.debug(f"{method.upper()}: {path}, {args}, {kwargs.get('headers')}")
--> 483 status, headers, info, contents = await self._request(
484 method, path, *args, **kwargs
485 )
486 if json_out:
487 return json.loads(contents)
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/decorator.py:224, in decorate.<locals>.fun(*args, **kw)
222 if not kwsyntax:
223 args, kw = fix(args, kw, sig)
--> 224 return await caller(func, *(extras + args), **kw)
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/gcsfs/retry.py:135, in retry_request(func, retries, *args, **kwargs)
133 if retry > 0:
134 await asyncio.sleep(min(random.random() + 2 ** (retry - 1), 32))
--> 135 return await func(*args, **kwargs)
136 except (
137 HttpError,
138 requests.exceptions.RequestException,
(...) 141 aiohttp.client_exceptions.ClientError,
142 ) as e:
143 if (
144 isinstance(e, HttpError)
145 and e.code == 400
146 and "requester pays" in e.message
147 ):
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/gcsfs/core.py:476, in GCSFileSystem._request(self, method, path, headers, json, data, *args, **kwargs)
473 info = r.request_info # for debug only
474 contents = await r.read()
--> 476 validate_response(status, contents, path, args)
477 return status, headers, info, contents
File ~/micromamba/envs/po-cookbook-dev/lib/python3.13/site-packages/gcsfs/retry.py:120, in validate_response(status, content, path, args)
118 raise requests.exceptions.ProxyError()
119 elif "invalid" in str(msg):
--> 120 raise ValueError(f"Bad Request: {path}\n{msg}")
121 elif error and not isinstance(error, str):
122 raise HttpError(error)
ValueError: Bad Request: https://storage.googleapis.com/download/storage/v1/b/pangeo-cmems-duacs/o/.zattrs?alt=media
User project specified in the request is invalid.
Visually Examine Some of the Data¶
Let’s do a sanity check that the data looks reasonable. Here we use the hvplot interactive plotting library.
ds.sla.hvplot.image('longitude', 'latitude',
rasterize=True, dynamic=True, width=800, height=450,
widget_type='scrubber', widget_location='bottom', cmap='RdBu_r')
Create and Connect to Dask Distributed Cluster¶
from dask_gateway import Gateway
from dask.distributed import Client
gateway = Gateway()
cluster = gateway.new_cluster()
cluster.adapt(minimum=1, maximum=20)
cluster
** ☝️ Don’t forget to click the link above to view the scheduler dashboard! **
client = Client(cluster)
client
Timeseries of Global Mean Sea Level¶
Here we make a simple yet fundamental calculation: the rate of increase of global mean sea level over the observational period.
# the number of GB involved in the reduction
ds.sla.nbytes/1e9
# the computationally intensive step
sla_timeseries = ds.sla.mean(dim=('latitude', 'longitude')).load()
sla_timeseries.plot(label='full data')
sla_timeseries.rolling(time=365, center=True).mean().plot(label='rolling annual mean')
plt.ylabel('Sea Level Anomaly [m]')
plt.title('Global Mean Sea Level')
plt.legend()
plt.grid()
In order to understand how the sea level rise is distributed in latitude, we can make a sort of Hovmöller diagram.
sla_hov = ds.sla.mean(dim='longitude').load()
fig, ax = plt.subplots(figsize=(12, 4))
sla_hov.name = 'Sea Level Anomaly [m]'
sla_hov.transpose().plot(vmax=0.2, ax=ax)
We can see that most sea level rise is actually in the Southern Hemisphere.
Sea Level Variability¶
We can examine the natural variability in sea level by looking at its standard deviation in time.
sla_std = ds.sla.std(dim='time').load()
sla_std.name = 'Sea Level Variability [m]'
ax = sla_std.plot()
_ = plt.title('Sea Level Variability')