Skip to article frontmatterSkip to article content

Advanced Baseline Imager (ABI) data with Satpy

pythia ncar

This notebook is developed during the pythia cook-off at NCAR Mesa-Lab Boulder Colorado, June 12-14, 2024

Participants in the workshop event have the chance to practice collaborative problem-solving and hands-on learning in the field of Python programming.

This notebook is part of the Breakout Topic: Geostationary on AWS, lead by Jorge Humberto Bravo Mendez jbravo2@stevens.edu, from Stevens Institute of Technology

Advanced Baseline Imager (ABI) data with Satpy

Using Satpy to read and Advanced Baseline Imager (ABI) data from GOES-R satellites. Here’s a step-by-step guide:


Imports

import warnings
warnings.filterwarnings('ignore')

from satpy.scene import Scene
from satpy.utils import debug_on

from datetime import datetime

from glob import glob

Starting to create satpy scenes

sat_files = glob("input/G18_ABI-L1b-RadC/*")
sat_files
['input/G18_ABI-L1b-RadC/OR_ABI-L1b-RadC-M6C10_G18_s20230041816176_e20230041818563_c20230041819021.nc', 'input/G18_ABI-L1b-RadC/OR_ABI-L1b-RadC-M6C03_G18_s20230041816176_e20230041818550_c20230041818584.nc', 'input/G18_ABI-L1b-RadC/OR_ABI-L1b-RadC-M6C05_G18_s20230041816176_e20230041818550_c20230041819005.nc', 'input/G18_ABI-L1b-RadC/OR_ABI-L1b-RadC-M6C12_G18_s20230041816176_e20230041818555_c20230041819009.nc', 'input/G18_ABI-L1b-RadC/OR_ABI-L1b-RadC-M6C09_G18_s20230041816176_e20230041818555_c20230041819014.nc', 'input/G18_ABI-L1b-RadC/OR_ABI-L1b-RadC-M6C16_G18_s20230041816176_e20230041818561_c20230041819025.nc', 'input/G18_ABI-L1b-RadC/OR_ABI-L1b-RadC-M6C04_G18_s20230041816176_e20230041818549_c20230041818580.nc', 'input/G18_ABI-L1b-RadC/OR_ABI-L1b-RadC-M6C08_G18_s20230041816176_e20230041818549_c20230041818599.nc', 'input/G18_ABI-L1b-RadC/OR_ABI-L1b-RadC-M6C01_G18_s20230041816176_e20230041818551_c20230041818587.nc', 'input/G18_ABI-L1b-RadC/OR_ABI-L1b-RadC-M6C02_G18_s20230041816176_e20230041818549_c20230041818582.nc', 'input/G18_ABI-L1b-RadC/OR_ABI-L1b-RadC-M6C15_G18_s20230041816176_e20230041818555_c20230041819030.nc', 'input/G18_ABI-L1b-RadC/OR_ABI-L1b-RadC-M6C13_G18_s20230041816176_e20230041818561_c20230041819034.nc', 'input/G18_ABI-L1b-RadC/OR_ABI-L1b-RadC-M6C06_G18_s20230041816176_e20230041818555_c20230041819032.nc', 'input/G18_ABI-L1b-RadC/OR_ABI-L1b-RadC-M6C07_G18_s20230041816176_e20230041818562_c20230041818592.nc', 'input/G18_ABI-L1b-RadC/OR_ABI-L1b-RadC-M6C11_G18_s20230041816176_e20230041818549_c20230041818594.nc', 'input/G18_ABI-L1b-RadC/OR_ABI-L1b-RadC-M6C14_G18_s20230041816176_e20230041818549_c20230041819017.nc']
scn = Scene(filenames = sat_files, reader='abi_l1b')

dataset_names = scn.all_dataset_names()

print(dataset_names)
['C01', 'C02', 'C03', 'C04', 'C05', 'C06', 'C07', 'C08', 'C09', 'C10', 'C11', 'C12', 'C13', 'C14', 'C15', 'C16']
scn.load([f'C{x:02d}' for x in range(1, 17)])
print(scn.available_composite_names())
['24h_microphysics', 'airmass', 'ash', 'blowing_snow', 'cimss_cloud_type', 'cimss_cloud_type_raw', 'cimss_green', 'cimss_green_sunz', 'cimss_green_sunz_rayleigh', 'cimss_true_color', 'cimss_true_color_sunz', 'cimss_true_color_sunz_rayleigh', 'cira_day_convection', 'cira_fire_temperature', 'cloud_phase', 'cloud_phase_distinction', 'cloud_phase_distinction_raw', 'cloud_phase_raw', 'cloudtop', 'color_infrared', 'colorized_ir_clouds', 'convection', 'day_cloud_type', 'day_microphysics', 'day_microphysics_abi', 'day_microphysics_eum', 'day_severe_storms', 'day_severe_storms_tropical', 'dust', 'fire_temperature_awips', 'fog', 'geo_color', 'geo_color_background_with_low_clouds', 'geo_color_high_clouds', 'geo_color_low_clouds', 'geo_color_night', 'green', 'green_crefl', 'green_nocorr', 'green_raw', 'green_snow', 'highlight_C14', 'ir108_3d', 'ir_cloud_day', 'land_cloud', 'land_cloud_fire', 'natural_color', 'natural_color_nocorr', 'natural_color_raw', 'natural_color_raw_with_night_ir', 'night_fog', 'night_ir_alpha', 'night_ir_with_background', 'night_ir_with_background_hires', 'night_microphysics', 'night_microphysics_eum', 'night_microphysics_tropical', 'overshooting_tops', 'overview', 'overview_raw', 'rocket_plume_day', 'rocket_plume_night', 'snow', 'snow_fog', 'so2', 'tropical_airmass', 'true_color', 'true_color_crefl', 'true_color_nocorr', 'true_color_raw', 'true_color_reproduction', 'true_color_reproduction_corr', 'true_color_reproduction_uncorr', 'true_color_with_night_fires', 'true_color_with_night_fires_nocorr', 'true_color_with_night_ir', 'true_color_with_night_ir_hires', 'water_vapors1', 'water_vapors2']
rgb_im = 'airmass'

scn.load([rgb_im])
### Uncomment to show it
#scn.show(rgb_im)
result = scn[rgb_im]

result
Loading...
keys = scn.keys()

keys
[DataID(name='C01', wavelength=WavelengthRange(min=0.45, central=0.47, max=0.49, unit='µm'), resolution=1000, calibration=<1>, modifiers=()), DataID(name='C02', wavelength=WavelengthRange(min=0.59, central=0.64, max=0.69, unit='µm'), resolution=500, calibration=<1>, modifiers=()), DataID(name='C03', wavelength=WavelengthRange(min=0.8455, central=0.865, max=0.8845, unit='µm'), resolution=1000, calibration=<1>, modifiers=()), DataID(name='C04', wavelength=WavelengthRange(min=1.3705, central=1.378, max=1.3855, unit='µm'), resolution=2000, calibration=<1>, modifiers=()), DataID(name='C05', wavelength=WavelengthRange(min=1.58, central=1.61, max=1.64, unit='µm'), resolution=1000, calibration=<1>, modifiers=()), DataID(name='C06', wavelength=WavelengthRange(min=2.225, central=2.25, max=2.275, unit='µm'), resolution=2000, calibration=<1>, modifiers=()), DataID(name='C07', wavelength=WavelengthRange(min=3.8, central=3.9, max=4.0, unit='µm'), resolution=2000, calibration=<2>, modifiers=()), DataID(name='C08', wavelength=WavelengthRange(min=5.77, central=6.185, max=6.6, unit='µm'), resolution=2000, calibration=<2>, modifiers=()), DataID(name='C09', wavelength=WavelengthRange(min=6.75, central=6.95, max=7.15, unit='µm'), resolution=2000, calibration=<2>, modifiers=()), DataID(name='C10', wavelength=WavelengthRange(min=7.24, central=7.34, max=7.44, unit='µm'), resolution=2000, calibration=<2>, modifiers=()), DataID(name='C11', wavelength=WavelengthRange(min=8.3, central=8.5, max=8.7, unit='µm'), resolution=2000, calibration=<2>, modifiers=()), DataID(name='C12', wavelength=WavelengthRange(min=9.42, central=9.61, max=9.8, unit='µm'), resolution=2000, calibration=<2>, modifiers=()), DataID(name='C13', wavelength=WavelengthRange(min=10.1, central=10.35, max=10.6, unit='µm'), resolution=2000, calibration=<2>, modifiers=()), DataID(name='C14', wavelength=WavelengthRange(min=10.8, central=11.2, max=11.6, unit='µm'), resolution=2000, calibration=<2>, modifiers=()), DataID(name='C15', wavelength=WavelengthRange(min=11.8, central=12.3, max=12.8, unit='µm'), resolution=2000, calibration=<2>, modifiers=()), DataID(name='C16', wavelength=WavelengthRange(min=13.0, central=13.3, max=13.6, unit='µm'), resolution=2000, calibration=<2>, modifiers=()), DataID(name='airmass', resolution=2000)]
area_info = scn["C13"].area

area_info
Loading...
area_info = scn["C01"].area

area_info
Loading...
area_info = scn["C02"].area

area_info
Loading...
scn.load(["natural_color"])
The following datasets were not created and may require resampling to be generated: DataID(name='natural_color')
rs = scn["C13"].area

lscn = scn.resample(rs)
lscn.load(["natural_color"])

### Uncomment to show it
#lscn.show("natural_color")
lscn.load(['true_color'])

### Uncomment to show it
#lscn.show('true_color')
  0%|          | 0/52 [00:00<?, ?kB/s]
100%|██████████| 52/52 [00:00<00:00, 880.53kB/s]

---------------------------------------------------------------------------
EOFError                                  Traceback (most recent call last)
Cell In[16], line 1
----> 1 lscn.load(['true_color'])
      3 ### Uncomment to show it
      4 #lscn.show('true_color')

File ~/micromamba/envs/geostationary-cookbook/lib/python3.13/site-packages/satpy/scene.py:1476, in Scene.load(self, wishlist, calibration, resolution, polarization, level, modifiers, generate, unload, **kwargs)
   1474 self._read_datasets_from_storage(**kwargs)
   1475 if generate:
-> 1476     self.generate_possible_composites(unload)

File ~/micromamba/envs/geostationary-cookbook/lib/python3.13/site-packages/satpy/scene.py:1539, in Scene.generate_possible_composites(self, unload)
   1532 def generate_possible_composites(self, unload):
   1533     """See which composites can be generated and generate them.
   1534 
   1535     Args:
   1536         unload (bool): if the dependencies of the composites
   1537                        should be unloaded after successful generation.
   1538     """
-> 1539     keepables = self._generate_composites_from_loaded_datasets()
   1541     if self.missing_datasets:
   1542         self._remove_failed_datasets(keepables)

File ~/micromamba/envs/geostationary-cookbook/lib/python3.13/site-packages/satpy/scene.py:1558, in Scene._generate_composites_from_loaded_datasets(self)
   1555 trunk_nodes = self._dependency_tree.trunk(limit_nodes_to=self.missing_datasets,
   1556                                           limit_children_to=self._datasets.keys())
   1557 needed_comp_nodes = set(self._filter_loaded_datasets_from_trunk_nodes(trunk_nodes))
-> 1558 return self._generate_composites_nodes_from_loaded_datasets(needed_comp_nodes)

File ~/micromamba/envs/geostationary-cookbook/lib/python3.13/site-packages/satpy/scene.py:1564, in Scene._generate_composites_nodes_from_loaded_datasets(self, compositor_nodes)
   1562 keepables = set()
   1563 for node in compositor_nodes:
-> 1564     self._generate_composite(node, keepables)
   1565 return keepables

File ~/micromamba/envs/geostationary-cookbook/lib/python3.13/site-packages/satpy/scene.py:1588, in Scene._generate_composite(self, comp_node, keepables)
   1586 try:
   1587     delayed_prereq = False
-> 1588     prereq_datasets = self._get_prereq_datasets(
   1589         comp_node.name,
   1590         prereqs,
   1591         keepables,
   1592     )
   1593 except DelayedGeneration:
   1594     # if we are missing a required dependency that could be generated
   1595     # later then we need to wait to return until after we've also
   1596     # processed the optional dependencies
   1597     delayed_prereq = True

File ~/micromamba/envs/geostationary-cookbook/lib/python3.13/site-packages/satpy/scene.py:1670, in Scene._get_prereq_datasets(self, comp_id, prereq_nodes, keepables, skip)
   1667 prereq_id = prereq_node.name
   1668 if prereq_id not in self._datasets and prereq_id not in keepables \
   1669         and isinstance(prereq_node, CompositorNode):
-> 1670     self._generate_composite(prereq_node, keepables)
   1672 # composite generation may have updated the DataID
   1673 prereq_id = prereq_node.name

File ~/micromamba/envs/geostationary-cookbook/lib/python3.13/site-packages/satpy/scene.py:1622, in Scene._generate_composite(self, comp_node, keepables)
   1619     return
   1621 try:
-> 1622     composite = compositor(prereq_datasets,
   1623                            optional_datasets=optional_datasets,
   1624                            **comp_node.name.to_dict())
   1625     cid = DataID.new_id_from_dataarray(composite)
   1626     self._datasets[cid] = composite

File ~/micromamba/envs/geostationary-cookbook/lib/python3.13/site-packages/satpy/modifiers/atmosphere.py:107, in PSPRayleighReflectance.__call__(self, projectables, optional_datasets, **info)
    102 reduce_strength = np.clip(self.attrs.get("reduce_strength", 0), 0, 1).astype(vis.dtype)
    104 logger.info("Removing Rayleigh scattering with atmosphere '%s' and "
    105             "aerosol type '%s' for '%s'",
    106             atmosphere, aerosol_type, vis.attrs["name"])
--> 107 corrector = Rayleigh(vis.attrs["platform_name"], vis.attrs["sensor"],
    108                      atmosphere=atmosphere,
    109                      aerosol_type=aerosol_type)
    111 try:
    112     refl_cor_band = corrector.get_reflectance(sunz, satz, ssadiff,
    113                                               vis.attrs["name"],
    114                                               red.data)

File ~/micromamba/envs/geostationary-cookbook/lib/python3.13/site-packages/pyspectral/rayleigh.py:173, in Rayleigh.__init__(self, platform_name, sensor, **kwargs)
    171 if not self._lutfiles_version_uptodate and self.do_download:
    172     LOG.info("Will download from internet...")
--> 173     download_luts(aerosol_type=aerosol_type)
    175 if (not os.path.exists(self.reflectance_lut_filename) or
    176         not os.path.isfile(self.reflectance_lut_filename)):
    177     raise IOError('pyspectral file for Rayleigh scattering correction ' +
    178                   'does not exist! Filename = ' +
    179                   str(self.reflectance_lut_filename))

File ~/micromamba/envs/geostationary-cookbook/lib/python3.13/site-packages/pyspectral/utils.py:392, in download_luts(aerosol_types, dry_run, aerosol_type)
    389     continue
    391 local_tarball_pathname = os.path.join(subdir_path, "pyspectral_rayleigh_correction_luts.tgz")
--> 392 _download_tarball_and_extract(lut_tarball_url, local_tarball_pathname, subdir_path)

File ~/micromamba/envs/geostationary-cookbook/lib/python3.13/site-packages/pyspectral/utils.py:421, in _download_tarball_and_extract(tarball_url, local_pathname, extract_dir)
    419 tar = tarfile.open(local_pathname)
    420 tar_kwargs = {} if sys.version_info < (3, 12) else {"filter": "data"}
--> 421 tar.extractall(extract_dir, **tar_kwargs)
    422 tar.close()
    423 os.remove(local_pathname)

File ~/micromamba/envs/geostationary-cookbook/lib/python3.13/tarfile.py:2352, in TarFile.extractall(self, path, members, numeric_owner, filter)
   2347     if tarinfo.isdir():
   2348         # For directories, delay setting attributes until later,
   2349         # since permissions can interfere with extraction and
   2350         # extracting contents can reset mtime.
   2351         directories.append(unfiltered)
-> 2352     self._extract_one(tarinfo, path, set_attrs=not tarinfo.isdir(),
   2353                       numeric_owner=numeric_owner,
   2354                       filter_function=filter_function)
   2356 # Reverse sort directories.
   2357 directories.sort(key=lambda a: a.name, reverse=True)

File ~/micromamba/envs/geostationary-cookbook/lib/python3.13/tarfile.py:2455, in TarFile._extract_one(self, tarinfo, path, set_attrs, numeric_owner, filter_function)
   2452 self._check("r")
   2454 try:
-> 2455     self._extract_member(tarinfo, os.path.join(path, tarinfo.name),
   2456                          set_attrs=set_attrs,
   2457                          numeric_owner=numeric_owner,
   2458                          filter_function=filter_function,
   2459                          extraction_root=path)
   2460 except (OSError, UnicodeEncodeError) as e:
   2461     self._handle_fatal_error(e)

File ~/micromamba/envs/geostationary-cookbook/lib/python3.13/tarfile.py:2544, in TarFile._extract_member(self, tarinfo, targetpath, set_attrs, numeric_owner, filter_function, extraction_root)
   2541     self._dbg(1, tarinfo.name)
   2543 if tarinfo.isreg():
-> 2544     self.makefile(tarinfo, targetpath)
   2545 elif tarinfo.isdir():
   2546     self.makedir(tarinfo, targetpath)

File ~/micromamba/envs/geostationary-cookbook/lib/python3.13/tarfile.py:2601, in TarFile.makefile(self, tarinfo, targetpath)
   2599     target.truncate()
   2600 else:
-> 2601     copyfileobj(source, target, tarinfo.size, ReadError, bufsize)

File ~/micromamba/envs/geostationary-cookbook/lib/python3.13/tarfile.py:250, in copyfileobj(src, dst, length, exception, bufsize)
    248 blocks, remainder = divmod(length, bufsize)
    249 for b in range(blocks):
--> 250     buf = src.read(bufsize)
    251     if len(buf) < bufsize:
    252         raise exception("unexpected end of data")

File ~/micromamba/envs/geostationary-cookbook/lib/python3.13/gzip.py:340, in GzipFile.read(self, size)
    338     import errno
    339     raise OSError(errno.EBADF, "read() on write-only GzipFile object")
--> 340 return self._buffer.read(size)

File ~/micromamba/envs/geostationary-cookbook/lib/python3.13/_compression.py:68, in DecompressReader.readinto(self, b)
     66 def readinto(self, b):
     67     with memoryview(b) as view, view.cast("B") as byte_view:
---> 68         data = self.read(len(byte_view))
     69         byte_view[:len(data)] = data
     70     return len(data)

File ~/micromamba/envs/geostationary-cookbook/lib/python3.13/gzip.py:566, in _GzipReader.read(self, size)
    564         break
    565     if buf == b"":
--> 566         raise EOFError("Compressed file ended before the "
    567                        "end-of-stream marker was reached")
    569 self._crc = zlib.crc32(uncompress, self._crc)
    570 self._stream_size += len(uncompress)

EOFError: Compressed file ended before the end-of-stream marker was reached