
This notebook is developed during the pythia cook-off at NCAR Mesa-Lab Boulder Colorado, June 12-14, 2024
Participants in the workshop event have the chance to practice collaborative problem-solving and hands-on learning in the field of Python programming.
This notebook is part of the Breakout Topic: Geostationary on AWS, lead by Jorge Humberto Bravo Mendez jbravo2@stevens.edu, from Stevens Institute of Technology
Advanced Baseline Imager (ABI) data with Satpy¶
Using Satpy to read and Advanced Baseline Imager (ABI) data from GOES-R satellites. Here’s a step-by-step guide:
Imports¶
import warnings
warnings.filterwarnings('ignore')
from satpy.scene import Scene
from satpy.utils import debug_on
from datetime import datetime
from glob import globStarting to create satpy scenes¶
sat_files = glob("input/G18_ABI-L1b-RadC/*")
sat_files['input/G18_ABI-L1b-RadC/OR_ABI-L1b-RadC-M6C03_G18_s20230041816176_e20230041818550_c20230041818584.nc',
'input/G18_ABI-L1b-RadC/OR_ABI-L1b-RadC-M6C11_G18_s20230041816176_e20230041818549_c20230041818594.nc',
'input/G18_ABI-L1b-RadC/OR_ABI-L1b-RadC-M6C05_G18_s20230041816176_e20230041818550_c20230041819005.nc',
'input/G18_ABI-L1b-RadC/OR_ABI-L1b-RadC-M6C09_G18_s20230041816176_e20230041818555_c20230041819014.nc',
'input/G18_ABI-L1b-RadC/OR_ABI-L1b-RadC-M6C06_G18_s20230041816176_e20230041818555_c20230041819032.nc',
'input/G18_ABI-L1b-RadC/OR_ABI-L1b-RadC-M6C16_G18_s20230041816176_e20230041818561_c20230041819025.nc',
'input/G18_ABI-L1b-RadC/OR_ABI-L1b-RadC-M6C04_G18_s20230041816176_e20230041818549_c20230041818580.nc',
'input/G18_ABI-L1b-RadC/OR_ABI-L1b-RadC-M6C12_G18_s20230041816176_e20230041818555_c20230041819009.nc',
'input/G18_ABI-L1b-RadC/OR_ABI-L1b-RadC-M6C15_G18_s20230041816176_e20230041818555_c20230041819030.nc',
'input/G18_ABI-L1b-RadC/OR_ABI-L1b-RadC-M6C02_G18_s20230041816176_e20230041818549_c20230041818582.nc',
'input/G18_ABI-L1b-RadC/OR_ABI-L1b-RadC-M6C07_G18_s20230041816176_e20230041818562_c20230041818592.nc',
'input/G18_ABI-L1b-RadC/OR_ABI-L1b-RadC-M6C14_G18_s20230041816176_e20230041818549_c20230041819017.nc',
'input/G18_ABI-L1b-RadC/OR_ABI-L1b-RadC-M6C10_G18_s20230041816176_e20230041818563_c20230041819021.nc',
'input/G18_ABI-L1b-RadC/OR_ABI-L1b-RadC-M6C13_G18_s20230041816176_e20230041818561_c20230041819034.nc',
'input/G18_ABI-L1b-RadC/OR_ABI-L1b-RadC-M6C01_G18_s20230041816176_e20230041818551_c20230041818587.nc',
'input/G18_ABI-L1b-RadC/OR_ABI-L1b-RadC-M6C08_G18_s20230041816176_e20230041818549_c20230041818599.nc']scn = Scene(filenames = sat_files, reader='abi_l1b')
dataset_names = scn.all_dataset_names()
print(dataset_names)['C01', 'C02', 'C03', 'C04', 'C05', 'C06', 'C07', 'C08', 'C09', 'C10', 'C11', 'C12', 'C13', 'C14', 'C15', 'C16']
scn.load([f'C{x:02d}' for x in range(1, 17)])print(scn.available_composite_names())['24h_microphysics', 'airmass', 'ash', 'cimss_cloud_type', 'cimss_cloud_type_raw', 'cimss_green', 'cimss_green_sunz', 'cimss_green_sunz_rayleigh', 'cimss_true_color', 'cimss_true_color_sunz', 'cimss_true_color_sunz_rayleigh', 'cira_day_convection', 'cira_fire_temperature', 'cloud_phase', 'cloud_phase_distinction', 'cloud_phase_distinction_raw', 'cloud_phase_raw', 'cloudtop', 'color_infrared', 'colorized_ir_clouds', 'convection', 'day_blowing_snow', 'day_cloud_type', 'day_cloud_type_distinction', 'day_cloud_type_distinction_raw', 'day_microphysics', 'day_microphysics_abi', 'day_microphysics_eum', 'day_severe_storms', 'day_severe_storms_tropical', 'dust', 'fire_temperature_awips', 'fog', 'geo_color', 'geo_color_background_with_low_clouds', 'geo_color_high_clouds', 'geo_color_low_clouds', 'geo_color_night', 'green', 'green_crefl', 'green_nocorr', 'green_raw', 'green_snow', 'highlight_C14', 'ir108_3d', 'ir_cloud_day', 'land_cloud', 'land_cloud_fire', 'natural_color', 'natural_color_nocorr', 'natural_color_raw', 'natural_color_raw_with_night_ir', 'night_fog', 'night_ir_alpha', 'night_ir_with_background', 'night_ir_with_background_hires', 'night_microphysics', 'night_microphysics_eum', 'night_microphysics_tropical', 'overshooting_tops', 'overview', 'overview_raw', 'rocket_plume_day', 'rocket_plume_night', 'simple_water_vapor', 'snow', 'snow_fog', 'so2', 'tropical_airmass', 'true_color', 'true_color_crefl', 'true_color_nocorr', 'true_color_raw', 'true_color_reproduction', 'true_color_reproduction_corr', 'true_color_reproduction_uncorr', 'true_color_with_night_fires', 'true_color_with_night_fires_nocorr', 'true_color_with_night_ir', 'true_color_with_night_ir_hires', 'volcanic_emissions', 'water_vapors1', 'water_vapors2']
rgb_im = 'airmass'
scn.load([rgb_im])### Uncomment to show it
#scn.show(rgb_im)result = scn[rgb_im]
resultLoading...
keys = scn.keys()
keys[DataID(name='C01', wavelength=WavelengthRange(min=0.45, central=0.47, max=0.49, unit='µm'), resolution=1000, calibration=<1>, modifiers=()),
DataID(name='C02', wavelength=WavelengthRange(min=0.59, central=0.64, max=0.69, unit='µm'), resolution=500, calibration=<1>, modifiers=()),
DataID(name='C03', wavelength=WavelengthRange(min=0.8455, central=0.865, max=0.8845, unit='µm'), resolution=1000, calibration=<1>, modifiers=()),
DataID(name='C04', wavelength=WavelengthRange(min=1.3705, central=1.378, max=1.3855, unit='µm'), resolution=2000, calibration=<1>, modifiers=()),
DataID(name='C05', wavelength=WavelengthRange(min=1.58, central=1.61, max=1.64, unit='µm'), resolution=1000, calibration=<1>, modifiers=()),
DataID(name='C06', wavelength=WavelengthRange(min=2.225, central=2.25, max=2.275, unit='µm'), resolution=2000, calibration=<1>, modifiers=()),
DataID(name='C07', wavelength=WavelengthRange(min=3.8, central=3.9, max=4.0, unit='µm'), resolution=2000, calibration=<2>, modifiers=()),
DataID(name='C08', wavelength=WavelengthRange(min=5.77, central=6.185, max=6.6, unit='µm'), resolution=2000, calibration=<2>, modifiers=()),
DataID(name='C09', wavelength=WavelengthRange(min=6.75, central=6.95, max=7.15, unit='µm'), resolution=2000, calibration=<2>, modifiers=()),
DataID(name='C10', wavelength=WavelengthRange(min=7.24, central=7.34, max=7.44, unit='µm'), resolution=2000, calibration=<2>, modifiers=()),
DataID(name='C11', wavelength=WavelengthRange(min=8.3, central=8.5, max=8.7, unit='µm'), resolution=2000, calibration=<2>, modifiers=()),
DataID(name='C12', wavelength=WavelengthRange(min=9.42, central=9.61, max=9.8, unit='µm'), resolution=2000, calibration=<2>, modifiers=()),
DataID(name='C13', wavelength=WavelengthRange(min=10.1, central=10.35, max=10.6, unit='µm'), resolution=2000, calibration=<2>, modifiers=()),
DataID(name='C14', wavelength=WavelengthRange(min=10.8, central=11.2, max=11.6, unit='µm'), resolution=2000, calibration=<2>, modifiers=()),
DataID(name='C15', wavelength=WavelengthRange(min=11.8, central=12.3, max=12.8, unit='µm'), resolution=2000, calibration=<2>, modifiers=()),
DataID(name='C16', wavelength=WavelengthRange(min=13.0, central=13.3, max=13.6, unit='µm'), resolution=2000, calibration=<2>, modifiers=()),
DataID(name='airmass', resolution=2000)]area_info = scn["C13"].area
area_infoLoading...
area_info = scn["C01"].area
area_infoLoading...
area_info = scn["C02"].area
area_infoLoading...
scn.load(["natural_color"])The following datasets were not created and may require resampling to be generated: DataID(name='natural_color')
rs = scn["C13"].area
lscn = scn.resample(rs)lscn.load(["natural_color"])
### Uncomment to show it
#lscn.show("natural_color")lscn.load(['true_color'])
### Uncomment to show it
#lscn.show('true_color')0kB [00:00, ?kB/s]1kB [00:00, 17403.75kB/s]
---------------------------------------------------------------------------
ReadError Traceback (most recent call last)
Cell In[16], line 1
----> 1 lscn.load(['true_color'])
3 ### Uncomment to show it
4 #lscn.show('true_color')
File ~/micromamba/envs/geostationary-cookbook/lib/python3.14/site-packages/satpy/scene.py:1484, in Scene.load(self, wishlist, calibration, resolution, polarization, level, modifiers, generate, unload, **kwargs)
1482 self._read_datasets_from_storage(**kwargs)
1483 if generate:
-> 1484 self.generate_possible_composites(unload)
File ~/micromamba/envs/geostationary-cookbook/lib/python3.14/site-packages/satpy/scene.py:1547, in Scene.generate_possible_composites(self, unload)
1540 def generate_possible_composites(self, unload):
1541 """See which composites can be generated and generate them.
1542
1543 Args:
1544 unload (bool): if the dependencies of the composites
1545 should be unloaded after successful generation.
1546 """
-> 1547 keepables = self._generate_composites_from_loaded_datasets()
1549 if self.missing_datasets:
1550 self._remove_failed_datasets(keepables)
File ~/micromamba/envs/geostationary-cookbook/lib/python3.14/site-packages/satpy/scene.py:1566, in Scene._generate_composites_from_loaded_datasets(self)
1563 trunk_nodes = self._dependency_tree.trunk(limit_nodes_to=self.missing_datasets,
1564 limit_children_to=self._datasets.keys())
1565 needed_comp_nodes = set(self._filter_loaded_datasets_from_trunk_nodes(trunk_nodes))
-> 1566 return self._generate_composites_nodes_from_loaded_datasets(needed_comp_nodes)
File ~/micromamba/envs/geostationary-cookbook/lib/python3.14/site-packages/satpy/scene.py:1572, in Scene._generate_composites_nodes_from_loaded_datasets(self, compositor_nodes)
1570 keepables = set()
1571 for node in compositor_nodes:
-> 1572 self._generate_composite(node, keepables)
1573 return keepables
File ~/micromamba/envs/geostationary-cookbook/lib/python3.14/site-packages/satpy/scene.py:1596, in Scene._generate_composite(self, comp_node, keepables)
1594 try:
1595 delayed_prereq = False
-> 1596 prereq_datasets = self._get_prereq_datasets(
1597 comp_node.name,
1598 prereqs,
1599 keepables,
1600 )
1601 except DelayedGeneration:
1602 # if we are missing a required dependency that could be generated
1603 # later then we need to wait to return until after we've also
1604 # processed the optional dependencies
1605 delayed_prereq = True
File ~/micromamba/envs/geostationary-cookbook/lib/python3.14/site-packages/satpy/scene.py:1678, in Scene._get_prereq_datasets(self, comp_id, prereq_nodes, keepables, skip)
1675 prereq_id = prereq_node.name
1676 if prereq_id not in self._datasets and prereq_id not in keepables \
1677 and isinstance(prereq_node, CompositorNode):
-> 1678 self._generate_composite(prereq_node, keepables)
1680 # composite generation may have updated the DataID
1681 prereq_id = prereq_node.name
File ~/micromamba/envs/geostationary-cookbook/lib/python3.14/site-packages/satpy/scene.py:1630, in Scene._generate_composite(self, comp_node, keepables)
1627 return
1629 try:
-> 1630 composite = compositor(prereq_datasets,
1631 optional_datasets=optional_datasets,
1632 **comp_node.name.to_dict())
1633 cid = DataID.new_id_from_dataarray(composite)
1634 self._datasets[cid] = composite
File ~/micromamba/envs/geostationary-cookbook/lib/python3.14/site-packages/satpy/modifiers/atmosphere.py:107, in PSPRayleighReflectance.__call__(self, projectables, optional_datasets, **info)
102 reduce_strength = np.clip(self.attrs.get("reduce_strength", 0), 0, 1).astype(vis.dtype)
104 logger.info("Removing Rayleigh scattering with atmosphere '%s' and "
105 "aerosol type '%s' for '%s'",
106 atmosphere, aerosol_type, vis.attrs["name"])
--> 107 corrector = Rayleigh(vis.attrs["platform_name"], vis.attrs["sensor"],
108 atmosphere=atmosphere,
109 aerosol_type=aerosol_type)
111 try:
112 refl_cor_band = corrector.get_reflectance(sunz, satz, ssadiff,
113 vis.attrs["name"],
114 red.data)
File ~/micromamba/envs/geostationary-cookbook/lib/python3.14/site-packages/pyspectral/rayleigh.py:173, in Rayleigh.__init__(self, platform_name, sensor, **kwargs)
171 if not self._lutfiles_version_uptodate and self.do_download:
172 LOG.info("Will download from internet...")
--> 173 download_luts(aerosol_types=[aerosol_type])
175 if (not os.path.exists(self.reflectance_lut_filename) or
176 not os.path.isfile(self.reflectance_lut_filename)):
177 raise IOError('pyspectral file for Rayleigh scattering correction ' +
178 'does not exist! Filename = ' +
179 str(self.reflectance_lut_filename))
File ~/micromamba/envs/geostationary-cookbook/lib/python3.14/site-packages/pyspectral/utils.py:393, in download_luts(aerosol_types, dry_run, aerosol_type)
390 continue
392 local_tarball_pathname = os.path.join(subdir_path, "pyspectral_rayleigh_correction_luts.tgz")
--> 393 _download_tarball_and_extract(lut_tarball_url, local_tarball_pathname, subdir_path)
File ~/micromamba/envs/geostationary-cookbook/lib/python3.14/site-packages/pyspectral/utils.py:420, in _download_tarball_and_extract(tarball_url, local_pathname, extract_dir)
415 for data in _tqdm_or_iter(response.iter_content(chunk_size=chunk_size),
416 total=(int(total_size / chunk_size + 0.5)),
417 unit='kB'):
418 handle.write(data)
--> 420 tar = tarfile.open(local_pathname)
421 tar_kwargs = {} if sys.version_info < (3, 12) else {"filter": "data"}
422 tar.extractall(extract_dir, **tar_kwargs)
File ~/micromamba/envs/geostationary-cookbook/lib/python3.14/tarfile.py:1904, in TarFile.open(cls, name, mode, fileobj, bufsize, **kwargs)
1902 continue
1903 error_msgs_summary = '\n'.join(error_msgs)
-> 1904 raise ReadError(f"file could not be opened successfully:\n{error_msgs_summary}")
1906 elif ":" in mode:
1907 filemode, comptype = mode.split(":", 1)
ReadError: file could not be opened successfully:
- method gz: ReadError('not a gzip file')
- method bz2: ReadError('not a bzip2 file')
- method xz: ReadError('not an lzma file')
- method zst: ReadError('not a zstd file')
- method tar: ReadError('truncated header')