Use Xarray module to read in model data from nomads server.
This example uses the xarray module to access data from the nomads server for archive NAM analysis data via OPeNDAP. Xarray makes it easier to select times and levels, although you still have to know the coordinate variable name. A simple 500 hPa plot is created after selecting with xarray.
Import all of our needed modules
from datetime import datetime
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import matplotlib.pyplot as plt
import metpy.calc as mpcalc
from metpy.units import units
import numpy as np
import xarray as xrAccessing data using Xarray¶
# Specify our date/time of product desired
dt = datetime(2016, 4, 16, 18)
# Construct our OPeNDAP access URL
base_url = 'https://www.ncei.noaa.gov/thredds/dodsC/model-namanl-old/'
data = xr.open_dataset(f'{base_url}{dt:%Y%m}/{dt:%Y%m%d}/'
f'namanl_218_{dt:%Y%m%d}_{dt:%H}00_000.grb').metpy.parse_cf()oc_open: server error retrieving url: code=500 message="java.lang.IllegalStateException: No files in this collection =namanl_218_20160416_1800_000.grb topdir=/san5302/nexus/namanl/201604/20160416"---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
File ~/micromamba/envs/metpy-cookbook/lib/python3.14/site-packages/xarray/backends/file_manager.py:219, in CachingFileManager._acquire_with_cache_info(self, needs_lock)
218 try:
--> 219 file = self._cache[self._key]
220 except KeyError:
File ~/micromamba/envs/metpy-cookbook/lib/python3.14/site-packages/xarray/backends/lru_cache.py:56, in LRUCache.__getitem__(self, key)
55 with self._lock:
---> 56 value = self._cache[key]
57 self._cache.move_to_end(key)
KeyError: [<class 'netCDF4._netCDF4.Dataset'>, ('https://www.ncei.noaa.gov/thredds/dodsC/model-namanl-old/201604/20160416/namanl_218_20160416_1800_000.grb',), 'r', (('clobber', True), ('diskless', False), ('format', 'NETCDF4'), ('persist', False)), '3fbb1912-9b76-482c-a896-cc8b9f3644e1']
During handling of the above exception, another exception occurred:
OSError Traceback (most recent call last)
Cell In[2], line 6
4 # Construct our OPeNDAP access URL
5 base_url = 'https://www.ncei.noaa.gov/thredds/dodsC/model-namanl-old/'
----> 6 data = xr.open_dataset(f'{base_url}{dt:%Y%m}/{dt:%Y%m%d}/'
7 f'namanl_218_{dt:%Y%m%d}_{dt:%H}00_000.grb').metpy.parse_cf()
File ~/micromamba/envs/metpy-cookbook/lib/python3.14/site-packages/xarray/backends/api.py:606, in open_dataset(filename_or_obj, engine, chunks, cache, decode_cf, mask_and_scale, decode_times, decode_timedelta, use_cftime, concat_characters, decode_coords, drop_variables, create_default_indexes, inline_array, chunked_array_type, from_array_kwargs, backend_kwargs, **kwargs)
594 decoders = _resolve_decoders_kwargs(
595 decode_cf,
596 open_backend_dataset_parameters=backend.open_dataset_parameters,
(...) 602 decode_coords=decode_coords,
603 )
605 overwrite_encoded_chunks = kwargs.pop("overwrite_encoded_chunks", None)
--> 606 backend_ds = backend.open_dataset(
607 filename_or_obj,
608 drop_variables=drop_variables,
609 **decoders,
610 **kwargs,
611 )
612 ds = _dataset_from_backend_dataset(
613 backend_ds,
614 filename_or_obj,
(...) 625 **kwargs,
626 )
627 return ds
File ~/micromamba/envs/metpy-cookbook/lib/python3.14/site-packages/xarray/backends/netCDF4_.py:767, in NetCDF4BackendEntrypoint.open_dataset(self, filename_or_obj, mask_and_scale, decode_times, concat_characters, decode_coords, drop_variables, use_cftime, decode_timedelta, group, mode, format, clobber, diskless, persist, auto_complex, lock, autoclose)
745 def open_dataset(
746 self,
747 filename_or_obj: T_PathFileOrDataStore,
(...) 764 autoclose=False,
765 ) -> Dataset:
766 filename_or_obj = _normalize_path(filename_or_obj)
--> 767 store = NetCDF4DataStore.open(
768 filename_or_obj,
769 mode=mode,
770 format=format,
771 group=group,
772 clobber=clobber,
773 diskless=diskless,
774 persist=persist,
775 auto_complex=auto_complex,
776 lock=lock,
777 autoclose=autoclose,
778 )
780 store_entrypoint = StoreBackendEntrypoint()
781 with close_on_error(store):
File ~/micromamba/envs/metpy-cookbook/lib/python3.14/site-packages/xarray/backends/netCDF4_.py:525, in NetCDF4DataStore.open(cls, filename, mode, format, group, clobber, diskless, persist, auto_complex, lock, lock_maker, autoclose)
521 else:
522 manager = CachingFileManager(
523 netCDF4.Dataset, filename, mode=mode, kwargs=kwargs
524 )
--> 525 return cls(manager, group=group, mode=mode, lock=lock, autoclose=autoclose)
File ~/micromamba/envs/metpy-cookbook/lib/python3.14/site-packages/xarray/backends/netCDF4_.py:429, in NetCDF4DataStore.__init__(self, manager, group, mode, lock, autoclose)
427 self._group = group
428 self._mode = mode
--> 429 self.format = self.ds.data_model
430 self._filename = self.ds.filepath()
431 self.is_remote = is_remote_uri(self._filename)
File ~/micromamba/envs/metpy-cookbook/lib/python3.14/site-packages/xarray/backends/netCDF4_.py:534, in NetCDF4DataStore.ds(self)
532 @property
533 def ds(self):
--> 534 return self._acquire()
File ~/micromamba/envs/metpy-cookbook/lib/python3.14/site-packages/xarray/backends/netCDF4_.py:528, in NetCDF4DataStore._acquire(self, needs_lock)
527 def _acquire(self, needs_lock=True):
--> 528 with self._manager.acquire_context(needs_lock) as root:
529 ds = _nc4_require_group(root, self._group, self._mode)
530 return ds
File ~/micromamba/envs/metpy-cookbook/lib/python3.14/contextlib.py:141, in _GeneratorContextManager.__enter__(self)
139 del self.args, self.kwds, self.func
140 try:
--> 141 return next(self.gen)
142 except StopIteration:
143 raise RuntimeError("generator didn't yield") from None
File ~/micromamba/envs/metpy-cookbook/lib/python3.14/site-packages/xarray/backends/file_manager.py:207, in CachingFileManager.acquire_context(self, needs_lock)
204 @contextmanager
205 def acquire_context(self, needs_lock: bool = True) -> Iterator[T_File]:
206 """Context manager for acquiring a file."""
--> 207 file, cached = self._acquire_with_cache_info(needs_lock)
208 try:
209 yield file
File ~/micromamba/envs/metpy-cookbook/lib/python3.14/site-packages/xarray/backends/file_manager.py:225, in CachingFileManager._acquire_with_cache_info(self, needs_lock)
223 kwargs = kwargs.copy()
224 kwargs["mode"] = self._mode
--> 225 file = self._opener(*self._args, **kwargs)
226 if self._mode == "w":
227 # ensure file doesn't get overridden when opened again
228 self._mode = "a"
File src/netCDF4/_netCDF4.pyx:2517, in netCDF4._netCDF4.Dataset.__init__()
File src/netCDF4/_netCDF4.pyx:2154, in netCDF4._netCDF4._ensure_nc_success()
OSError: [Errno -70] NetCDF: DAP server error: 'https://www.ncei.noaa.gov/thredds/dodsC/model-namanl-old/201604/20160416/namanl_218_20160416_1800_000.grb'NAM data is in a projected coordinate and you get back the projection X and Y values in km
# Create a 2-d meshgrid of our x, y coordinates
# manually converted to meters (km * 1000)
#x, y = np.meshgrid(data['x'].values * 1000, data['y'].values * 1000)
x = data.Geopotential_height_isobaric.metpy.x.metpy.convert_units('meter').values
y = data.Geopotential_height_isobaric.metpy.y.metpy.convert_units('meter').valuesGetting the valid times in a more useable format
# Get the valid times from the file
vtimes = data.Geopotential_height_isobaric.metpy.time.data.astype('datetime64[ms]').astype('O')
print(vtimes)Xarray has some nice functionality to choose the time and level that you specifically want to use. In this example the time variable is ‘time’ and the level variable is ‘isobaric1’. Unfortunately, these can be different with each file you use, so you’ll always need to check what they are by listing the coordinate variable names
# print(data.Geopotential_height.coords)
hght_500 = data.Geopotential_height_isobaric.metpy.sel(time1=vtimes[0], vertical=500*units.hPa)
uwnd_500 = data['u-component_of_wind_isobaric'].metpy.sel(time1=vtimes[0], vertical=500*units.hPa)
vwnd_500 = data['v-component_of_wind_isobaric'].metpy.sel(time1=vtimes[0], vertical=500*units.hPa)Now make the 500-hPa map¶
# Must set data projection, NAM is LCC projection
datacrs = data.Geopotential_height_isobaric.metpy.cartopy_crs
# A different LCC projection for the plot.
plotcrs = ccrs.LambertConformal(central_latitude=45., central_longitude=-100.,
standard_parallels=[30, 60])
fig = plt.figure(figsize=(17., 11.))
ax = plt.axes(projection=plotcrs)
ax.coastlines('50m', edgecolor='black')
ax.add_feature(cfeature.STATES, linewidth=0.5)
ax.set_extent([-130, -67, 20, 50], ccrs.PlateCarree())
clev500 = np.arange(5100, 6000, 60)
cs = ax.contour(x, y, mpcalc.smooth_n_point(hght_500, 9, 5), clev500,
colors='k', linewidths=2.5, linestyles='solid', transform=datacrs)
ax.clabel(cs, fontsize=12, colors='k', inline=1, inline_spacing=8,
fmt='%i', rightside_up=True, use_clabeltext=True)
# Here we put boxes around the clabels with a black boarder white facecolor
# `labelTexts` necessary as ~cartopy.mpl.contour.GeoContourSet.clabel
# does not return list of texts as of 0.18
for t in cs.labelTexts:
t.set_bbox({'fc': 'w'})
# Transform Vectors before plotting, then plot wind barbs.
wind_slice = slice(None, None, 16)
ax.barbs(x[wind_slice], y[wind_slice],
uwnd_500.data[wind_slice, wind_slice], vwnd_500.data[wind_slice, wind_slice],
length=7, transform=datacrs)
# Add some titles to make the plot readable by someone else
plt.title('500-hPa Geopotential Heights (m)', loc='left')
plt.title(f'VALID: {vtimes[0]}', loc='right');