CMIP6 image

Regridding with xESMF and calculating a multi-model mean


Overview

The main goal of this workflow is to calculate the mean change in ocean heat uptake (OHU) associated with the transient climate response (TCR) for CMIP6. TCR is defined as the change in global mean surface temperature at the time of CO\(_2\) doubling in a climate model run with a 1% increase in CO\(_2\) per year. The amount and pattern of heat uptake into the oceans are important in determining the strength of radiative feedbacks and thus climate sensitivity. See Xie (2020) for an overview.

In order to use as many models as possible, we will need to load the model output in its native grid, then regrid to a common grid (here 1°x1° lat-lon) using xESMF. From there, we can take the average across models and either plot the result or save it as a netCDF file for later use.

Prerequisites

Concepts

Importance

Notes

Intro to Xarray

Necessary

Computations and Masks with Xarray

Necessary

Load CMIP6 Data with Intake-ESM

Necessary

Intro to Cartopy

Helpful

Understanding of NetCDF

Helpful

Familiarity with CMIP6

Helpful

  • Time to learn: 30 minutes


Imports

import matplotlib.pyplot as plt
import matplotlib.colors as colors
import numpy as np
import pandas as pd
import xarray as xr
import intake
import xesmf as xe
from cartopy import crs as ccrs
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter

Access the data

First, we will open and search the Pangeo CMIP6 catalog for monthly hfds (downward heat flux at the sea surface) for the control (piControl) and 1%/year CO\(_2\) (1pctCO2) runs for all available models on their native grids. The argument require_all_on='source_id' ensures that each model used has both experiments required for this analysis.

cat_url = "https://storage.googleapis.com/cmip6/pangeo-cmip6.json"
col = intake.open_esm_datastore(cat_url)
query = dict(experiment_id=['1pctCO2', 'piControl'], table_id='Omon', variable_id='hfds', 
             grid_label='gn', member_id='r1i1p1f1', require_all_on='source_id')

cat = col.search(**query)
cat.df
activity_id institution_id source_id experiment_id member_id table_id variable_id grid_label zstore dcpp_init_year version
0 CMIP CSIRO-ARCCSS ACCESS-CM2 1pctCO2 r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/CSIRO-ARCCSS/ACCESS-CM2/... NaN 20191109
1 CMIP CSIRO-ARCCSS ACCESS-CM2 piControl r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/CSIRO-ARCCSS/ACCESS-CM2/... NaN 20191112
2 CMIP CSIRO ACCESS-ESM1-5 1pctCO2 r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/CSIRO/ACCESS-ESM1-5/1pct... NaN 20191115
3 CMIP CSIRO ACCESS-ESM1-5 piControl r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/CSIRO/ACCESS-ESM1-5/piCo... NaN 20191214
4 CMIP AWI AWI-CM-1-1-MR 1pctCO2 r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/AWI/AWI-CM-1-1-MR/1pctCO... NaN 20181218
5 CMIP AWI AWI-CM-1-1-MR piControl r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/AWI/AWI-CM-1-1-MR/piCont... NaN 20181218
6 CMIP CAMS CAMS-CSM1-0 1pctCO2 r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/CAMS/CAMS-CSM1-0/1pctCO2... NaN 20190708
7 CMIP CAMS CAMS-CSM1-0 piControl r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/CAMS/CAMS-CSM1-0/piContr... NaN 20190729
8 CMIP NCAR CESM2 piControl r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/NCAR/CESM2/piControl/r1i... NaN 20190320
9 CMIP NCAR CESM2 1pctCO2 r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/NCAR/CESM2/1pctCO2/r1i1p... NaN 20190425
10 CMIP NCAR CESM2-FV2 piControl r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/NCAR/CESM2-FV2/piControl... NaN 20191120
11 CMIP NCAR CESM2-FV2 1pctCO2 r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/NCAR/CESM2-FV2/1pctCO2/r... NaN 20200310
12 CMIP NCAR CESM2-WACCM piControl r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/NCAR/CESM2-WACCM/piContr... NaN 20190320
13 CMIP NCAR CESM2-WACCM 1pctCO2 r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/NCAR/CESM2-WACCM/1pctCO2... NaN 20190425
14 CMIP NCAR CESM2-WACCM-FV2 piControl r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/NCAR/CESM2-WACCM-FV2/piC... NaN 20191120
15 CMIP NCAR CESM2-WACCM-FV2 1pctCO2 r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/NCAR/CESM2-WACCM-FV2/1pc... NaN 20200226
16 CMIP THU CIESM 1pctCO2 r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/THU/CIESM/1pctCO2/r1i1p1... NaN 20200220
17 CMIP THU CIESM piControl r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/THU/CIESM/piControl/r1i1... NaN 20200220
18 CMIP CMCC CMCC-CM2-SR5 1pctCO2 r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/CMCC/CMCC-CM2-SR5/1pctCO... NaN 20200616
19 CMIP CMCC CMCC-CM2-SR5 piControl r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/CMCC/CMCC-CM2-SR5/piCont... NaN 20200616
20 CMIP CMCC CMCC-ESM2 1pctCO2 r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/CMCC/CMCC-ESM2/1pctCO2/r... NaN 20210127
21 CMIP CMCC CMCC-ESM2 piControl r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/CMCC/CMCC-ESM2/piControl... NaN 20210304
22 CMIP CCCma CanESM5 1pctCO2 r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/CCCma/CanESM5/1pctCO2/r1... NaN 20190429
23 CMIP CCCma CanESM5 piControl r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/CCCma/CanESM5/piControl/... NaN 20190429
24 CMIP EC-Earth-Consortium EC-Earth3-Veg piControl r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/EC-Earth-Consortium/EC-E... NaN 20200919
25 CMIP EC-Earth-Consortium EC-Earth3-Veg 1pctCO2 r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/EC-Earth-Consortium/EC-E... NaN 20200919
26 CMIP CAS FGOALS-g3 piControl r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/CAS/FGOALS-g3/piControl/... NaN 20191126
27 CMIP CAS FGOALS-g3 1pctCO2 r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/CAS/FGOALS-g3/1pctCO2/r1... NaN 20191126
28 CMIP FIO-QLNM FIO-ESM-2-0 piControl r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/FIO-QLNM/FIO-ESM-2-0/piC... NaN 20200921
29 CMIP FIO-QLNM FIO-ESM-2-0 1pctCO2 r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/FIO-QLNM/FIO-ESM-2-0/1pc... NaN 20200927
30 CMIP NOAA-GFDL GFDL-CM4 1pctCO2 r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/1pctC... NaN 20180701
31 CMIP NOAA-GFDL GFDL-CM4 piControl r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/NOAA-GFDL/GFDL-CM4/piCon... NaN 20180701
32 CMIP NOAA-GFDL GFDL-ESM4 1pctCO2 r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/NOAA-GFDL/GFDL-ESM4/1pct... NaN 20180701
33 CMIP NOAA-GFDL GFDL-ESM4 piControl r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/NOAA-GFDL/GFDL-ESM4/piCo... NaN 20180701
34 CMIP NASA-GISS GISS-E2-1-G piControl r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/NASA-GISS/GISS-E2-1-G/pi... NaN 20180824
35 CMIP NASA-GISS GISS-E2-1-G 1pctCO2 r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/NASA-GISS/GISS-E2-1-G/1p... NaN 20180905
36 CMIP NASA-GISS GISS-E2-1-H 1pctCO2 r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/NASA-GISS/GISS-E2-1-H/1p... NaN 20190403
37 CMIP NASA-GISS GISS-E2-1-H piControl r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/NASA-GISS/GISS-E2-1-H/pi... NaN 20190410
38 CMIP NASA-GISS GISS-E2-2-G 1pctCO2 r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/NASA-GISS/GISS-E2-2-G/1p... NaN 20191120
39 CMIP NASA-GISS GISS-E2-2-G piControl r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/NASA-GISS/GISS-E2-2-G/pi... NaN 20191120
40 CMIP IPSL IPSL-CM6A-LR 1pctCO2 r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/IPSL/IPSL-CM6A-LR/1pctCO... NaN 20180727
41 CMIP IPSL IPSL-CM6A-LR piControl r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/IPSL/IPSL-CM6A-LR/piCont... NaN 20200326
42 CMIP UA MCM-UA-1-0 1pctCO2 r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/UA/MCM-UA-1-0/1pctCO2/r1... NaN 20190731
43 CMIP UA MCM-UA-1-0 piControl r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/UA/MCM-UA-1-0/piControl/... NaN 20190731
44 CMIP MPI-M MPI-ESM1-2-HR 1pctCO2 r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/MPI-M/MPI-ESM1-2-HR/1pct... NaN 20190710
45 CMIP MPI-M MPI-ESM1-2-HR piControl r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/MPI-M/MPI-ESM1-2-HR/piCo... NaN 20190710
46 CMIP MPI-M MPI-ESM1-2-LR piControl r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/MPI-M/MPI-ESM1-2-LR/piCo... NaN 20190710
47 CMIP MPI-M MPI-ESM1-2-LR 1pctCO2 r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/MPI-M/MPI-ESM1-2-LR/1pct... NaN 20190710
48 CMIP NUIST NESM3 1pctCO2 r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/NUIST/NESM3/1pctCO2/r1i1... NaN 20190703
49 CMIP NUIST NESM3 piControl r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/NUIST/NESM3/piControl/r1... NaN 20190704
50 CMIP NCC NorCPM1 piControl r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/NCC/NorCPM1/piControl/r1... NaN 20190914
51 CMIP NCC NorCPM1 1pctCO2 r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/NCC/NorCPM1/1pctCO2/r1i1... NaN 20190914
52 CMIP SNU SAM0-UNICON 1pctCO2 r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/SNU/SAM0-UNICON/1pctCO2/... NaN 20190323
53 CMIP SNU SAM0-UNICON piControl r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/SNU/SAM0-UNICON/piContro... NaN 20190910
54 CMIP AS-RCEC TaiESM1 1pctCO2 r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/AS-RCEC/TaiESM1/1pctCO2/... NaN 20201130
55 CMIP AS-RCEC TaiESM1 piControl r1i1p1f1 Omon hfds gn gs://cmip6/CMIP6/CMIP/AS-RCEC/TaiESM1/piContro... NaN 20210213

Conveniently, NCAR contributed some data to CMIP6 that has already been regridded to a 1x1 lat-lon grid, which is the resolution I am interested in for the ensemble mean. We will use the coordinates from this Dataset when we create the xESMF regridder.

rg_query = dict(source_id='CESM2', experiment_id='piControl', table_id='Omon', variable_id='hfds', 
             grid_label='gr', member_id='r1i1p1f1', require_all_on=['source_id'])

rg_cat = col.search(**rg_query)
rg_cat.df
activity_id institution_id source_id experiment_id member_id table_id variable_id grid_label zstore dcpp_init_year version
0 CMIP NCAR CESM2 piControl r1i1p1f1 Omon hfds gr gs://cmip6/CMIP6/CMIP/NCAR/CESM2/piControl/r1i... NaN 20190320

Now, make the dictionaries with the data:

dset_dict = cat.to_dataset_dict(zarr_kwargs={'use_cftime':True})
list(dset_dict.keys())
--> The keys in the returned dictionary of datasets are constructed as follows:
	'activity_id.institution_id.source_id.experiment_id.table_id.grid_label'
100.00% [56/56 00:22<00:00]
['CMIP.UA.MCM-UA-1-0.piControl.Omon.gn',
 'CMIP.CSIRO.ACCESS-ESM1-5.piControl.Omon.gn',
 'CMIP.AWI.AWI-CM-1-1-MR.1pctCO2.Omon.gn',
 'CMIP.NCAR.CESM2-WACCM.piControl.Omon.gn',
 'CMIP.EC-Earth-Consortium.EC-Earth3-Veg.piControl.Omon.gn',
 'CMIP.THU.CIESM.1pctCO2.Omon.gn',
 'CMIP.SNU.SAM0-UNICON.1pctCO2.Omon.gn',
 'CMIP.EC-Earth-Consortium.EC-Earth3-Veg.1pctCO2.Omon.gn',
 'CMIP.SNU.SAM0-UNICON.piControl.Omon.gn',
 'CMIP.UA.MCM-UA-1-0.1pctCO2.Omon.gn',
 'CMIP.NASA-GISS.GISS-E2-1-G.1pctCO2.Omon.gn',
 'CMIP.NCAR.CESM2-WACCM-FV2.piControl.Omon.gn',
 'CMIP.CCCma.CanESM5.1pctCO2.Omon.gn',
 'CMIP.NCAR.CESM2.piControl.Omon.gn',
 'CMIP.CMCC.CMCC-ESM2.piControl.Omon.gn',
 'CMIP.CAMS.CAMS-CSM1-0.1pctCO2.Omon.gn',
 'CMIP.AS-RCEC.TaiESM1.1pctCO2.Omon.gn',
 'CMIP.IPSL.IPSL-CM6A-LR.piControl.Omon.gn',
 'CMIP.IPSL.IPSL-CM6A-LR.1pctCO2.Omon.gn',
 'CMIP.NCAR.CESM2-WACCM.1pctCO2.Omon.gn',
 'CMIP.NASA-GISS.GISS-E2-1-G.piControl.Omon.gn',
 'CMIP.NCC.NorCPM1.1pctCO2.Omon.gn',
 'CMIP.NCC.NorCPM1.piControl.Omon.gn',
 'CMIP.NUIST.NESM3.1pctCO2.Omon.gn',
 'CMIP.NASA-GISS.GISS-E2-1-H.piControl.Omon.gn',
 'CMIP.NOAA-GFDL.GFDL-ESM4.piControl.Omon.gn',
 'CMIP.NASA-GISS.GISS-E2-2-G.1pctCO2.Omon.gn',
 'CMIP.NASA-GISS.GISS-E2-1-H.1pctCO2.Omon.gn',
 'CMIP.NCAR.CESM2-FV2.1pctCO2.Omon.gn',
 'CMIP.FIO-QLNM.FIO-ESM-2-0.1pctCO2.Omon.gn',
 'CMIP.NCAR.CESM2-FV2.piControl.Omon.gn',
 'CMIP.CMCC.CMCC-CM2-SR5.piControl.Omon.gn',
 'CMIP.NCAR.CESM2.1pctCO2.Omon.gn',
 'CMIP.MPI-M.MPI-ESM1-2-LR.1pctCO2.Omon.gn',
 'CMIP.AWI.AWI-CM-1-1-MR.piControl.Omon.gn',
 'CMIP.NOAA-GFDL.GFDL-CM4.1pctCO2.Omon.gn',
 'CMIP.MPI-M.MPI-ESM1-2-HR.piControl.Omon.gn',
 'CMIP.CMCC.CMCC-ESM2.1pctCO2.Omon.gn',
 'CMIP.NOAA-GFDL.GFDL-CM4.piControl.Omon.gn',
 'CMIP.THU.CIESM.piControl.Omon.gn',
 'CMIP.CAS.FGOALS-g3.piControl.Omon.gn',
 'CMIP.AS-RCEC.TaiESM1.piControl.Omon.gn',
 'CMIP.CSIRO-ARCCSS.ACCESS-CM2.1pctCO2.Omon.gn',
 'CMIP.CMCC.CMCC-CM2-SR5.1pctCO2.Omon.gn',
 'CMIP.NASA-GISS.GISS-E2-2-G.piControl.Omon.gn',
 'CMIP.NOAA-GFDL.GFDL-ESM4.1pctCO2.Omon.gn',
 'CMIP.CSIRO-ARCCSS.ACCESS-CM2.piControl.Omon.gn',
 'CMIP.CAMS.CAMS-CSM1-0.piControl.Omon.gn',
 'CMIP.NUIST.NESM3.piControl.Omon.gn',
 'CMIP.CAS.FGOALS-g3.1pctCO2.Omon.gn',
 'CMIP.MPI-M.MPI-ESM1-2-HR.1pctCO2.Omon.gn',
 'CMIP.MPI-M.MPI-ESM1-2-LR.piControl.Omon.gn',
 'CMIP.CCCma.CanESM5.piControl.Omon.gn',
 'CMIP.NCAR.CESM2-WACCM-FV2.1pctCO2.Omon.gn',
 'CMIP.CSIRO.ACCESS-ESM1-5.1pctCO2.Omon.gn',
 'CMIP.FIO-QLNM.FIO-ESM-2-0.piControl.Omon.gn']
rg_dset_dict = rg_cat.to_dataset_dict(zarr_kwargs={'use_cftime':True})
list(rg_dset_dict.keys())
--> The keys in the returned dictionary of datasets are constructed as follows:
	'activity_id.institution_id.source_id.experiment_id.table_id.grid_label'
100.00% [1/1 00:15<00:00]
['CMIP.NCAR.CESM2.piControl.Omon.gr']

Define some functions and organize

First, let’s make a function to get the diagnostic of interest: the change in ocean heat uptake at the time of transient CO\(_2\) doubling compared to the pre-industrial control:

def get_tcr(ctrl_key, expr_key):
    ds_1pct = dset_dict[expr_key].squeeze()
    ds_piCl = dset_dict[ctrl_key].squeeze()
    ds_tcr = ds_1pct.isel(time=slice(12*59, 12*80)).mean(dim='time') - ds_piCl.isel(time=slice(12*59, 12*80)).mean(dim='time')
    return ds_tcr

Note that the time slice is 20 years centered around year 70, which is when CO\(_2\) doubles in a 1pctCO2 experiment (\(1.01^{70}\approx 2\)). Just for convenience, we will also define a function that creates the xESMF regridder and performs the regridding. The regridder is specific to the input (ds_in) and output (regrid_to) grids, so it must be redefined for each model.

def regrid(ds_in, regrid_to, method='bilinear'):
    regridder = xe.Regridder(ds_in, regrid_to, method=method, periodic=True, ignore_degenerate=True)
    ds_out = regridder(ds_in)
    return ds_out

Finally, the following function takes the list of keys generated by Intake-ESM and splits them into two sorted lists of keys: one for the piControl experiment and another for 1pctCO2. This will work nicely with the get_tcr() function.

def sorted_split_list(a_list):
    c_list = []
    e_list = []
    for item in a_list:
        if 'piControl' in item:
            c_list.append(item)
        elif '1pctCO2' in item:
            e_list.append(item)
        else: print('Could not find experiment name in key:'+item)
    return sorted(c_list), sorted(e_list)

Let’s make the lists and look at them to make sure they are properly sorted:

ctrl_keys, expr_keys = sorted_split_list(list(dset_dict.keys()))
for i in range(len(ctrl_keys)):
    print(ctrl_keys[i]+'\t\t'+expr_keys[i])
CMIP.AS-RCEC.TaiESM1.piControl.Omon.gn		CMIP.AS-RCEC.TaiESM1.1pctCO2.Omon.gn
CMIP.AWI.AWI-CM-1-1-MR.piControl.Omon.gn		CMIP.AWI.AWI-CM-1-1-MR.1pctCO2.Omon.gn
CMIP.CAMS.CAMS-CSM1-0.piControl.Omon.gn		CMIP.CAMS.CAMS-CSM1-0.1pctCO2.Omon.gn
CMIP.CAS.FGOALS-g3.piControl.Omon.gn		CMIP.CAS.FGOALS-g3.1pctCO2.Omon.gn
CMIP.CCCma.CanESM5.piControl.Omon.gn		CMIP.CCCma.CanESM5.1pctCO2.Omon.gn
CMIP.CMCC.CMCC-CM2-SR5.piControl.Omon.gn		CMIP.CMCC.CMCC-CM2-SR5.1pctCO2.Omon.gn
CMIP.CMCC.CMCC-ESM2.piControl.Omon.gn		CMIP.CMCC.CMCC-ESM2.1pctCO2.Omon.gn
CMIP.CSIRO-ARCCSS.ACCESS-CM2.piControl.Omon.gn		CMIP.CSIRO-ARCCSS.ACCESS-CM2.1pctCO2.Omon.gn
CMIP.CSIRO.ACCESS-ESM1-5.piControl.Omon.gn		CMIP.CSIRO.ACCESS-ESM1-5.1pctCO2.Omon.gn
CMIP.EC-Earth-Consortium.EC-Earth3-Veg.piControl.Omon.gn		CMIP.EC-Earth-Consortium.EC-Earth3-Veg.1pctCO2.Omon.gn
CMIP.FIO-QLNM.FIO-ESM-2-0.piControl.Omon.gn		CMIP.FIO-QLNM.FIO-ESM-2-0.1pctCO2.Omon.gn
CMIP.IPSL.IPSL-CM6A-LR.piControl.Omon.gn		CMIP.IPSL.IPSL-CM6A-LR.1pctCO2.Omon.gn
CMIP.MPI-M.MPI-ESM1-2-HR.piControl.Omon.gn		CMIP.MPI-M.MPI-ESM1-2-HR.1pctCO2.Omon.gn
CMIP.MPI-M.MPI-ESM1-2-LR.piControl.Omon.gn		CMIP.MPI-M.MPI-ESM1-2-LR.1pctCO2.Omon.gn
CMIP.NASA-GISS.GISS-E2-1-G.piControl.Omon.gn		CMIP.NASA-GISS.GISS-E2-1-G.1pctCO2.Omon.gn
CMIP.NASA-GISS.GISS-E2-1-H.piControl.Omon.gn		CMIP.NASA-GISS.GISS-E2-1-H.1pctCO2.Omon.gn
CMIP.NASA-GISS.GISS-E2-2-G.piControl.Omon.gn		CMIP.NASA-GISS.GISS-E2-2-G.1pctCO2.Omon.gn
CMIP.NCAR.CESM2-FV2.piControl.Omon.gn		CMIP.NCAR.CESM2-FV2.1pctCO2.Omon.gn
CMIP.NCAR.CESM2-WACCM-FV2.piControl.Omon.gn		CMIP.NCAR.CESM2-WACCM-FV2.1pctCO2.Omon.gn
CMIP.NCAR.CESM2-WACCM.piControl.Omon.gn		CMIP.NCAR.CESM2-WACCM.1pctCO2.Omon.gn
CMIP.NCAR.CESM2.piControl.Omon.gn		CMIP.NCAR.CESM2.1pctCO2.Omon.gn
CMIP.NCC.NorCPM1.piControl.Omon.gn		CMIP.NCC.NorCPM1.1pctCO2.Omon.gn
CMIP.NOAA-GFDL.GFDL-CM4.piControl.Omon.gn		CMIP.NOAA-GFDL.GFDL-CM4.1pctCO2.Omon.gn
CMIP.NOAA-GFDL.GFDL-ESM4.piControl.Omon.gn		CMIP.NOAA-GFDL.GFDL-ESM4.1pctCO2.Omon.gn
CMIP.NUIST.NESM3.piControl.Omon.gn		CMIP.NUIST.NESM3.1pctCO2.Omon.gn
CMIP.SNU.SAM0-UNICON.piControl.Omon.gn		CMIP.SNU.SAM0-UNICON.1pctCO2.Omon.gn
CMIP.THU.CIESM.piControl.Omon.gn		CMIP.THU.CIESM.1pctCO2.Omon.gn
CMIP.UA.MCM-UA-1-0.piControl.Omon.gn		CMIP.UA.MCM-UA-1-0.1pctCO2.Omon.gn

Note

If you look at the hfds anomaly for SAM0-UNICON, you will see negative values around the North Atlantic, especially in the Labrador Sea and Denmark Strait. These are areas of deep water formation and ocean heat uptake. By the CMIP convention, as described in the hfds attributes, a negative hfds indicates an upward heat flux from the ocean to the atmosphere, so by physical reasoning, this data should have the opposite sign. We could do this manually, but for simplicity, let’s just remove the model from our analysis.

dset_dict['CMIP.SNU.SAM0-UNICON.1pctCO2.Omon.gn']
<xarray.Dataset> Size: 895MB
Dimensions:             (member_id: 1, dcpp_init_year: 1, time: 1800, j: 384,
                         i: 320, bnds: 2, vertices: 4)
Coordinates:
  * i                   (i) int32 1kB 0 1 2 3 4 5 6 ... 314 315 316 317 318 319
  * j                   (j) int32 2kB 0 1 2 3 4 5 6 ... 378 379 380 381 382 383
    latitude            (j, i) float64 983kB dask.array<chunksize=(384, 320), meta=np.ndarray>
    longitude           (j, i) float64 983kB dask.array<chunksize=(384, 320), meta=np.ndarray>
  * time                (time) object 14kB 1850-01-17 00:29:59.999998 ... 199...
    time_bnds           (time, bnds) object 29kB dask.array<chunksize=(1800, 2), meta=np.ndarray>
  * member_id           (member_id) object 8B 'r1i1p1f1'
  * dcpp_init_year      (dcpp_init_year) float64 8B nan
Dimensions without coordinates: bnds, vertices
Data variables:
    hfds                (member_id, dcpp_init_year, time, j, i) float32 885MB dask.array<chunksize=(1, 1, 148, 384, 320), meta=np.ndarray>
    vertices_latitude   (j, i, vertices) float64 4MB dask.array<chunksize=(384, 320, 4), meta=np.ndarray>
    vertices_longitude  (j, i, vertices) float64 4MB dask.array<chunksize=(384, 320, 4), meta=np.ndarray>
Attributes: (12/63)
    Conventions:                      CF-1.7 CMIP-6.2
    activity_id:                      CMIP
    branch_method:                    standard
    branch_time_in_child:             0.0
    branch_time_in_parent:            99645.0
    cmor_version:                     3.4.0
    ...                               ...
    intake_esm_attrs:variable_id:     hfds
    intake_esm_attrs:grid_label:      gn
    intake_esm_attrs:zstore:          gs://cmip6/CMIP6/CMIP/SNU/SAM0-UNICON/1...
    intake_esm_attrs:version:         20190323
    intake_esm_attrs:_data_format_:   zarr
    intake_esm_dataset_key:           CMIP.SNU.SAM0-UNICON.1pctCO2.Omon.gn
get_tcr('CMIP.SNU.SAM0-UNICON.piControl.Omon.gn', 'CMIP.SNU.SAM0-UNICON.1pctCO2.Omon.gn').hfds.plot()
<matplotlib.collections.QuadMesh at 0x7f3d287d1b10>
../../_images/67eb3c0280f5602bd45114ece0e9d38d1ed406846527e5e59f44881b212efeb7.png
ctrl_keys.pop(-3)
expr_keys.pop(-3)
'CMIP.SNU.SAM0-UNICON.1pctCO2.Omon.gn'

We will also remove AWI-CM because it raises a MemoryError that causes this notebook to fail to execute via binderbot. Feel free to add it back if this notebook is being run locally.

ctrl_keys.pop(1)
expr_keys.pop(1)
'CMIP.AWI.AWI-CM-1-1-MR.1pctCO2.Omon.gn'

Regrid the data

First, we will define the output grid. It does not matter what the data actually is, since we just want the structure of the Dataset.

rg_ds = rg_dset_dict['CMIP.NCAR.CESM2.piControl.Omon.gr'].isel(time=0).squeeze()
rg_ds
<xarray.Dataset> Size: 272kB
Dimensions:         (lat: 180, lon: 360, d2: 2)
Coordinates:
  * lat             (lat) float64 1kB -89.5 -88.5 -87.5 -86.5 ... 87.5 88.5 89.5
    lat_bnds        (lat, d2) float64 3kB dask.array<chunksize=(180, 2), meta=np.ndarray>
  * lon             (lon) float64 3kB 0.5 1.5 2.5 3.5 ... 357.5 358.5 359.5
    lon_bnds        (lon, d2) float64 6kB dask.array<chunksize=(360, 2), meta=np.ndarray>
    time            object 8B 0001-01-15 13:00:00.999998
    time_bnds       (d2) object 16B dask.array<chunksize=(2,), meta=np.ndarray>
    member_id       <U8 32B 'r1i1p1f1'
    dcpp_init_year  float64 8B nan
Dimensions without coordinates: d2
Data variables:
    hfds            (lat, lon) float32 259kB dask.array<chunksize=(180, 360), meta=np.ndarray>
Attributes: (12/61)
    Conventions:                      CF-1.7 CMIP-6.2
    activity_id:                      CMIP
    branch_method:                    standard
    branch_time_in_child:             0.0
    branch_time_in_parent:            48545.0
    case_id:                          3
    ...                               ...
    intake_esm_attrs:variable_id:     hfds
    intake_esm_attrs:grid_label:      gr
    intake_esm_attrs:zstore:          gs://cmip6/CMIP6/CMIP/NCAR/CESM2/piCont...
    intake_esm_attrs:version:         20190320
    intake_esm_attrs:_data_format_:   zarr
    intake_esm_dataset_key:           CMIP.NCAR.CESM2.piControl.Omon.gr

Here we create a new dictionary to store our regridded data. The for-loop goes through the two sorted lists of keys and tries to regrid each model. This allows us to avoid removing a model and rerunning the code every time there is an error.

To summarize,

  • Get the diagnostic of interest and try to regrid to a 1x1 lat-lon grid

    • If that fails for any reason, print the error

    • If the regridding is successful, add it to the new dictionary

  • Repeat for all models

ds_regrid_dict = dict()
success_count = 0
model_count = 0

for ctrl_key, expr_key in zip(ctrl_keys, expr_keys):
    model = ctrl_key.split('.')[2]
    try:
        ds_tcr = get_tcr(ctrl_key=ctrl_key, expr_key=expr_key)
        ds_tcr_hfds_regridded = regrid(ds_tcr, rg_ds, method='nearest_s2d').hfds
    except Exception as e:
        print('Failed to regrid '+model+': '+str(e))
    else: 
        ds_regrid_dict[model] = ds_tcr_hfds_regridded
        print(model+' regridded and added to dictionary')
        success_count += 1
    finally:
        model_count += 1
        
print('-'*40+'\n| '+str(success_count)+'/'+str(model_count)+' models successfully regridded! |\n'+'-'*40)
TaiESM1 regridded and added to dictionary
CAMS-CSM1-0 regridded and added to dictionary
FGOALS-g3 regridded and added to dictionary
CanESM5 regridded and added to dictionary
CMCC-CM2-SR5 regridded and added to dictionary
CMCC-ESM2 regridded and added to dictionary
ACCESS-CM2 regridded and added to dictionary
ACCESS-ESM1-5 regridded and added to dictionary
EC-Earth3-Veg regridded and added to dictionary
FIO-ESM-2-0 regridded and added to dictionary
IPSL-CM6A-LR regridded and added to dictionary
MPI-ESM1-2-HR regridded and added to dictionary
MPI-ESM1-2-LR regridded and added to dictionary
GISS-E2-1-G regridded and added to dictionary
GISS-E2-1-H regridded and added to dictionary
GISS-E2-2-G regridded and added to dictionary
Failed to regrid CESM2-FV2: lon and lat should be both 1D or 2D
CESM2-WACCM-FV2 regridded and added to dictionary
CESM2-WACCM regridded and added to dictionary
CESM2 regridded and added to dictionary
NorCPM1 regridded and added to dictionary
GFDL-CM4 regridded and added to dictionary
GFDL-ESM4 regridded and added to dictionary
NESM3 regridded and added to dictionary
CIESM regridded and added to dictionary
MCM-UA-1-0 regridded and added to dictionary
----------------------------------------
| 25/26 models successfully regridded! |
----------------------------------------

CESM2-FV2 fails because of some issue with the dimensions of the coordinates. If we remove ignore_degenerate=True from the regridder defined in regrid(), there may be a few more failures because of a degenerate element: a cell that has corners close enough that the cell collapses to a line or point.

Now we concat the results into a single DataArray:

ds = list(ds_regrid_dict.values())
coord = list(ds_regrid_dict.keys())
ds_out_regrid = xr.concat(objs=ds, dim=coord, coords='all').rename({'concat_dim':'model'})
ds_out_regrid
<xarray.DataArray 'hfds' (model: 25, lat: 180, lon: 360)> Size: 6MB
dask.array<concatenate, shape=(25, 180, 360), dtype=float32, chunksize=(1, 180, 360), chunktype=numpy.ndarray>
Coordinates:
    member_id       (model) <U8 800B 'r1i1p1f1' 'r1i1p1f1' ... 'r1i1p1f1'
    dcpp_init_year  (model) float64 200B nan nan nan nan nan ... nan nan nan nan
  * lat             (lat) float64 1kB -89.5 -88.5 -87.5 -86.5 ... 87.5 88.5 89.5
    time            (model) object 200B 0001-01-15 13:00:00.999998 ... 0001-0...
  * lon             (lon) float64 3kB 0.5 1.5 2.5 3.5 ... 357.5 358.5 359.5
  * model           (model) object 200B 'TaiESM1' 'CAMS-CSM1-0' ... 'MCM-UA-1-0'

Plot or save the data

The following function extends lon by one grid point, giving it the value of the first point. This fixes a bug/feature of Cartopy where a vertical white line will appear at the “seam” of the plot. For example, if you have a dataset with longitudes [-179.5, 179.5] and make a plot centered on the Pacific, there will likely be a white line at 180. This is only for improving the look of the plot, so if you are doing further analysis or exporting to netCDF, skip this.

def add_cyclic_point(xarray_obj, dim, period=None):
    if period is None:
        period = xarray_obj.sizes[dim] / xarray_obj.coords[dim][:2].diff(dim).item()
    first_point = xarray_obj.isel({dim: slice(1)})
    first_point.coords[dim] = first_point.coords[dim]+period
    return xr.concat([xarray_obj, first_point], dim=dim)

Now we can take the ensemble mean and plot. Thanks to the work leading up to this point, it’s as simple as using Xarray’s .mean().

cmip6em_ohutcr = add_cyclic_point(ds_out_regrid.mean(dim='model'), 'lon', period=360)
# cmip6em_ohutcr.to_netcdf('cmip6_ohutcr.nc') # remove add_cyclic_point() and uncomment to save
cmip6em_ohutcr
<xarray.DataArray 'hfds' (lat: 180, lon: 361)> Size: 260kB
dask.array<concatenate, shape=(180, 361), dtype=float32, chunksize=(180, 360), chunktype=numpy.ndarray>
Coordinates:
  * lat      (lat) float64 1kB -89.5 -88.5 -87.5 -86.5 ... 86.5 87.5 88.5 89.5
  * lon      (lon) float64 3kB 0.5 1.5 2.5 3.5 4.5 ... 357.5 358.5 359.5 360.5
fig = plt.figure(1, figsize=(12, 5), dpi=130)
ax_mean = plt.subplot(projection=ccrs.PlateCarree(central_longitude=-150))
mean_plot = ax_mean.contourf(cmip6em_ohutcr.lon, cmip6em_ohutcr.lat, cmip6em_ohutcr, transform=ccrs.PlateCarree(), 
                             cmap='RdBu_r', levels=np.linspace(-35, 35, 15), extend='both')
ax_mean.set_title('CMIP6 ensemble-mean $\Delta\mathrm{OHUTCR}$')
ax_mean.coastlines()
ax_mean.set_xticks([-120, -60, 0, 60, 120, 180], crs=ccrs.PlateCarree())
ax_mean.set_yticks([-90, -60, -30, 0, 30, 60, 90], crs=ccrs.PlateCarree())
ax_mean.xaxis.set_major_formatter(LongitudeFormatter(zero_direction_label=True))
ax_mean.yaxis.set_major_formatter(LatitudeFormatter())
plt.colorbar(mean_plot, orientation='vertical', label='W m$^{-2}$')
<matplotlib.colorbar.Colorbar at 0x7f3d1c25a4a0>
/home/runner/miniconda3/envs/cookbook-dev/lib/python3.10/site-packages/cartopy/io/__init__.py:241: DownloadWarning: Downloading: https://naturalearth.s3.amazonaws.com/110m_physical/ne_110m_coastline.zip
  warnings.warn(f'Downloading: {url}', DownloadWarning)
../../_images/00b8463f7688a0771a656c05eb5d8538ffd2d53901e6636845c6fe3d21e5e1ea.png

Notice how the heat uptake is highest in the subpolar oceans, especially the North Atlantic. From this multi-model ensemble mean, we can see that this is a robust feature of climate models (and likely the climate system itself) in response to a CO\(_2\) forcing. For more background and motivation, see Hu et al. (2020).


Summary

This notebook demonstrates the use of xESMF to regrid the CMIP6 data hosted in Pangeo’s Google cloud storage. The regridded data allows us to use Xarray to take a multi-model mean, in this case, of changes in ocean heat uptake associated with each model’s transient climate response.

What’s next?

Other example workflows using this CMIP6 cloud data.

Resources and references

Hu, S., Xie, S.-P., & Liu, W. (2020). Global Pattern Formation of Net Ocean Surface Heat Flux Response to Greenhouse Warming. Journal of Climate, 33(17), 7503–7522. https://doi.org/10.1175/JCLI-D-19-0642.1

Xie, S.-P. (2020). Ocean warming pattern effect on global and regional climate change. AGU Advances, 1, e2019AV000130. https://doi.org/10.1029/2019AV000130

Parts of this workflow were taken from a similar workflow in this notebook by NordicESMhub.