ESGF logo Rooki logo Cartopy logo

Demo: Regridding and Plotting with Rooki and Cartopy


Overview

In this notebook, we demonstrate how to use Rooki to regrid CMIP model data and plot it in Cartopy for two examples:

  1. Regrid two CMIP models onto the same grid

  2. Coarsen the output for one model

Prerequisites

Concepts

Importance

Notes

Intro to intake-esgf

Necessary

Intro to Cartopy

Necessary

Using Rooki to access CMIP6 data

Helpful

Familiarity with rooki

Understanding of NetCDF

Helpful

Familiarity with metadata structure

  • Time to learn: 15 minutes


Imports

import os
import intake_esgf

# Run this on the DKRZ node in Germany, using the ESGF1 index node at LLNL
os.environ["ROOK_URL"] = "http://rook.dkrz.de/wps"
intake_esgf.conf.set(indices={"anl-dev": False,
                               "ornl-dev": False,
                               "esgf-node.llnl.gov": True})

import rooki.operators as ops
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import cartopy.crs as ccrs
import cartopy.feature as cfeature

import intake_esgf
from intake_esgf import ESGFCatalog
from rooki import rooki
from matplotlib.gridspec import GridSpec
from mpl_toolkits.axes_grid1.inset_locator import inset_axes

Example 1: Regrid two CMIP6 models onto the same grid

In this example, we want to compare the historical precipitation output between two CMIP models, CESM2 and CanESM5. Here will will look at the annual mean precipitation for 2010.

Access the desired datasets using intake-esgf and rooki

The function and workflow to read in CMPI6 data using intake-esgf and rooki in the next few cells are adapted from intake-esgf-with-rooki.ipynb. Essentially, we use intake-esgf to find the dataset IDs we want and then subset and average them using rooki.

def separate_dataset_id(id_list):
    rooki_id = id_list[0]
    rooki_id = rooki_id.split("|")[0]
    #rooki_id = f"css03_data.{rooki_id}"  # <-- just something you have to know for now :(
    return rooki_id
cat = ESGFCatalog()
cat.search(
        activity_id='CMIP',
        experiment_id=["historical",],
        variable_id=["pr"],
        member_id='r1i1p1f1',
        grid_label='gn',
        table_id="Amon",
        source_id = [ "CESM2", "CanESM5"]
    )

dsets = [separate_dataset_id(dataset) for dataset in list(cat.df.id.values)]
dsets
['CMIP6.CMIP.NCAR.CESM2.historical.r1i1p1f1.Amon.pr.gn.v20190401',
 'CMIP6.CMIP.CCCma.CanESM5.historical.r1i1p1f1.Amon.pr.gn.v20190429']

Subset the data to get the precipitation variable for 2010 and then average by time:

dset_list = [[]]*len(dsets)

for i, dset_id in enumerate(dsets):
    wf = ops.AverageByTime(
        ops.Subset(
            ops.Input('pr', [dset_id]),
            time='2010/2010'
        )
    )

    resp = wf.orchestrate()

    # if it worked, add the dataset to our list
    if resp.ok:
        dset_list[i] = resp.datasets()[0]
        
    # if it failed, tell us why
    else:
        print(resp.status)
Downloading to /tmp/metalink_i2xtz3r8/pr_Amon_CESM2_historical_r1i1p1f1_gn_20100101-20100101_avg-year.nc.
Downloading to /tmp/metalink_qmqno5nl/pr_Amon_CanESM5_historical_r1i1p1f1_gn_20100101-20100101_avg-year.nc.

Print the dataset list to get an overview of the metadata structure:

print(dset_list)
[<xarray.Dataset> Size: 233kB
Dimensions:    (time: 1, lat: 192, lon: 288, nbnd: 2)
Coordinates:
  * lat        (lat) float64 2kB -90.0 -89.06 -88.12 -87.17 ... 88.12 89.06 90.0
  * lon        (lon) float64 2kB 0.0 1.25 2.5 3.75 ... 355.0 356.2 357.5 358.8
  * time       (time) object 8B 2010-01-01 00:00:00
Dimensions without coordinates: nbnd
Data variables:
    pr         (time, lat, lon) float32 221kB ...
    lat_bnds   (time, lat, nbnd) float64 3kB ...
    lon_bnds   (time, lon, nbnd) float64 5kB ...
    time_bnds  (time, nbnd) object 16B ...
Attributes: (12/45)
    Conventions:            CF-1.7 CMIP-6.2
    activity_id:            CMIP
    branch_method:          standard
    branch_time_in_child:   674885.0
    branch_time_in_parent:  219000.0
    case_id:                15
    ...                     ...
    sub_experiment_id:      none
    table_id:               Amon
    tracking_id:            hdl:21.14100/a2c2f719-6790-484b-9f66-392e62cd0eb8
    variable_id:            pr
    variant_info:           CMIP6 20th century experiments (1850-2014) with C...
    variant_label:          r1i1p1f1, <xarray.Dataset> Size: 37kB
Dimensions:    (lat: 64, time: 1, bnds: 2, lon: 128)
Coordinates:
  * lat        (lat) float64 512B -87.86 -85.1 -82.31 ... 82.31 85.1 87.86
  * lon        (lon) float64 1kB 0.0 2.812 5.625 8.438 ... 351.6 354.4 357.2
  * time       (time) object 8B 2010-01-01 00:00:00
Dimensions without coordinates: bnds
Data variables:
    lat_bnds   (time, lat, bnds) float64 1kB ...
    lon_bnds   (time, lon, bnds) float64 2kB ...
    pr         (time, lat, lon) float32 33kB ...
    time_bnds  (time, bnds) object 16B ...
Attributes: (12/53)
    CCCma_model_hash:            3dedf95315d603326fde4f5340dc0519d80d10c0
    CCCma_parent_runid:          rc3-pictrl
    CCCma_pycmor_hash:           33c30511acc319a98240633965a04ca99c26427e
    CCCma_runid:                 rc3.1-his01
    Conventions:                 CF-1.7 CMIP-6.2
    YMDH_branch_time_in_child:   1850:01:01:00
    ...                          ...
    tracking_id:                 hdl:21.14100/363e1ebe-46e7-43dc-9feb-a7a4a0c...
    variable_id:                 pr
    variant_label:               r1i1p1f1
    version:                     v20190429
    license:                     CMIP6 model data produced by The Government ...
    cmor_version:                3.4.0]

Compare the precipitation data between models

First, let’s quickly plot the 2010 annual mean precipitation for each model to see what we’re working with. Since precipitation values vary greatly in magnitude, using a log-normalized colormap makes the data easier to visualize.

for dset in dset_list:
    dset.pr.plot(norm=mcolors.LogNorm())
    plt.show()
../_images/3aa6cfc3c9292c2d58babde4b6183c0fdc1cff0e9b3406f9999fe12d2b9fc71e.png ../_images/eab59dd0c13555370c75b68fc06b0cf9b0e7d6d74047473cf2f0e0fa49d3e1c8.png

Uncomment and run the following cell. If we try to take the difference outright, it fails!

# pr_diff = dset_list[0].pr - dset_list[1].pr

The models have different grids so we can’t directly subtract the data. We can use the grid attribute to get information on which grid each uses.

print(dset_list[0].grid)
print(dset_list[1].grid)
native 0.9x1.25 finite volume grid (192x288 latxlon)
T63L49 native atmosphere, T63 Linear Gaussian Grid; 128 x 64 longitude/latitude; 49 levels; top level 1 hPa

Regrid the models onto the same grid with Rooki

Look at the documentation on the regrid operator to see the available grid types and regrid methods:

rooki.regrid?

Here we’ll do the same process as before to read in and subset the datasets with rooki, but now we regrid using ops.Regrid before averaging over time. In this example, we use method=nearest_s2d to regrid each model onto the target grid using a nearest neighbors method. The target grid is a 1.25° grid, specified by grid='1pt25deg'.

rg_list = [[]]*len(dsets)

for i, dset_id in enumerate(dsets):
    wf = ops.AverageByTime(
        ops.Regrid(
            ops.Subset(
                ops.Input('pr', [dset_id]),
                time='2010/2010'
            ),
            method='nearest_s2d',
            grid='1pt25deg'
        )
    )


    resp = wf.orchestrate()
    
    # if it worked, add the regridded dataset to our list
    if resp.ok:
        rg_list[i] = resp.datasets()[0]
        
    # if it failed, tell us why
    else:
        print(resp.status)
        
Downloading to /tmp/metalink_jtl4_5x0/pr_Amon_CESM2_historical_r1i1p1f1_gr_20100101-20100101_avg-year.nc.
Downloading to /tmp/metalink_84h8l4il/pr_Amon_CanESM5_historical_r1i1p1f1_gr_20100101-20100101_avg-year.nc.

Print the list of regridded datasets to get an overview of the metadata structure. Note how lat and lon are now the same and each dataset has additional attributes, including grid_original and regrid_operation, which all keep track of the regridding operations we just completed.

print(rg_list)
[<xarray.Dataset> Size: 177kB
Dimensions:    (lat: 145, lon: 288, bnds: 2, time: 1, nbnd: 2)
Coordinates:
  * lat        (lat) float64 1kB -90.0 -88.75 -87.5 -86.25 ... 87.5 88.75 90.0
  * lon        (lon) float64 2kB 0.0 1.25 2.5 3.75 ... 355.0 356.2 357.5 358.8
    lat_bnds   (lat, bnds) float64 2kB ...
    lon_bnds   (lon, bnds) float64 5kB ...
  * time       (time) object 8B 2010-01-01 00:00:00
Dimensions without coordinates: bnds, nbnd
Data variables:
    pr         (time, lat, lon) float32 167kB ...
    time_bnds  (time, nbnd) object 16B ...
Attributes: (12/50)
    Conventions:                  CF-1.7 CMIP-6.2
    activity_id:                  CMIP
    branch_method:                standard
    branch_time_in_child:         674885.0
    branch_time_in_parent:        219000.0
    case_id:                      15
    ...                           ...
    grid_original:                native 0.9x1.25 finite volume grid (192x288...
    grid_label_original:          gn
    nominal_resolution_original:  100 km
    regrid_operation:             nearest_s2d_192x288_145x288_peri
    regrid_tool:                  xESMF_v0.8.6
    regrid_weights_uid:           79e1100d95467f7177a261a94d1333ad_f3646e1560..., <xarray.Dataset> Size: 177kB
Dimensions:    (lat: 145, lon: 288, bnds: 2, time: 1)
Coordinates:
  * lat        (lat) float64 1kB -90.0 -88.75 -87.5 -86.25 ... 87.5 88.75 90.0
  * lon        (lon) float64 2kB 0.0 1.25 2.5 3.75 ... 355.0 356.2 357.5 358.8
    lat_bnds   (lat, bnds) float64 2kB ...
    lon_bnds   (lon, bnds) float64 5kB ...
  * time       (time) object 8B 2010-01-01 00:00:00
Dimensions without coordinates: bnds
Data variables:
    pr         (time, lat, lon) float32 167kB ...
    time_bnds  (time, bnds) object 16B ...
Attributes: (12/58)
    CCCma_model_hash:             3dedf95315d603326fde4f5340dc0519d80d10c0
    CCCma_parent_runid:           rc3-pictrl
    CCCma_pycmor_hash:            33c30511acc319a98240633965a04ca99c26427e
    CCCma_runid:                  rc3.1-his01
    Conventions:                  CF-1.7 CMIP-6.2
    YMDH_branch_time_in_child:    1850:01:01:00
    ...                           ...
    grid_original:                T63L49 native atmosphere, T63 Linear Gaussi...
    grid_label_original:          gn
    nominal_resolution_original:  500 km
    regrid_operation:             nearest_s2d_64x128_145x288_peri
    regrid_tool:                  xESMF_v0.8.6
    regrid_weights_uid:           549cab49a80314b5a85515237d530e30_f3646e1560...]

Now they are on the same grid!

print(rg_list[0].grid)
print(rg_list[1].grid)
Global 1.25 degree grid with one cell centered at 0E,0N. As used by ERA-40.
Global 1.25 degree grid with one cell centered at 0E,0N. As used by ERA-40.

Quick plot the before and after for each model

The plots largely look the same, as they should - with the nearest neighbors method, we are just shifting the precipitation data onto a different grid without averaging between grid cells.

print(dset_list[0].source_id)
for ds in [dset_list[0], rg_list[0]]:
    ds.pr.plot(norm=mcolors.LogNorm())
    plt.show()
CESM2
../_images/3aa6cfc3c9292c2d58babde4b6183c0fdc1cff0e9b3406f9999fe12d2b9fc71e.png ../_images/39e2ec5cc79b2824c035a8af05b40136ee1511e8f9ee20f7a05aee75dc17f0f8.png
print(dset_list[1].source_id)
for ds in [dset_list[1], rg_list[1]]:
    ds.pr.plot(norm=mcolors.LogNorm())
    plt.show()
CanESM5
../_images/eab59dd0c13555370c75b68fc06b0cf9b0e7d6d74047473cf2f0e0fa49d3e1c8.png ../_images/6126f537773e8aa11905bbdff19e079cdcef31374783190fa68b5cc6d158ca58.png

Take the difference between precipitation datasets and plot it

Now that both models are on the same grid, we can subtract the precipitation datasets and plot the difference!

pr_diff = rg_list[0] - rg_list[1]

pr_diff.pr.plot(cmap="bwr")
plt.show()
../_images/a4325b9c2fd643a3c1e7d3174bd8fa3a93b44c7e51055108eef80e6df0ab7745.png

Plot everything together

Plot the regridded precipitation data as well as the difference between models on the same figure. We can use Cartopy to make it pretty. With GridSpec, we can also split up the figure and organize it to use the same colorbar for more than one panel.

# set up figure
fig = plt.figure(figsize=(6, 8))
gs = GridSpec(3, 2, width_ratios=[1, 0.1], hspace=0.2)

# specify the projection
proj = ccrs.Mollweide()

# set up plots for each model
axpr_1 = plt.subplot(gs[0, 0], projection=proj)
axpr_2 = plt.subplot(gs[1, 0], projection=proj)
axdiff = plt.subplot(gs[2, 0], projection=proj)

# axes where the colorbar will go 
axcb_pr = plt.subplot(gs[:2, 1]) 
axcb_diff = plt.subplot(gs[2, 1])
axcb_pr.axis("off")
axcb_diff.axis("off")

# plot the precipitation for both models
for i, ax in enumerate([axpr_1, axpr_2]):
    ds_rg = rg_list[i]
    pcm = ax.pcolormesh(ds_rg.lon, ds_rg.lat, ds_rg.pr.isel(time=0), norm=mcolors.LogNorm(vmin=1e-7, vmax=3e-4),
                         transform=ccrs.PlateCarree()
                       )
    ax.set_title(ds_rg.parent_source_id)
    ax.add_feature(cfeature.COASTLINE)
    
# now plot the difference
pcmd = axdiff.pcolormesh(pr_diff.lon, pr_diff.lat, pr_diff.pr.isel(time=0), cmap="bwr", vmin=-3e-4, vmax=3e-4,
                         transform=ccrs.PlateCarree()
                        )
axdiff.set_title("{a} - {b}".format(a=rg_list[0].parent_source_id, b=rg_list[1].parent_source_id))
axdiff.add_feature(cfeature.COASTLINE)

# set the precipitation colorbar
axcb_pr_ins = inset_axes(axcb_pr, width="50%", height="75%", loc="center")
cbar_pr = plt.colorbar(pcm, cax=axcb_pr_ins, orientation="vertical", extend="both")
cbar_pr.set_label("{n} ({u})".format(n=rg_list[0].pr.long_name, u=rg_list[0].pr.units))

# set the difference colorbar
axcb_diff_ins = inset_axes(axcb_diff, width="50%", height="100%", loc="center")
cbar_diff = plt.colorbar(pcmd, cax=axcb_diff_ins, orientation="vertical", extend="both")
cbar_diff.set_label("Difference ({u})".format(u=pr_diff.pr.units))

plt.show()
/home/runner/miniconda3/envs/cookbook-dev/lib/python3.10/site-packages/cartopy/io/__init__.py:241: DownloadWarning: Downloading: https://naturalearth.s3.amazonaws.com/110m_physical/ne_110m_coastline.zip
  warnings.warn(f'Downloading: {url}', DownloadWarning)
../_images/2b6ab2b83472c8617de439e282198c76a1564dbe39bc9b28ee50b179f0d3db2d.png

Example 2: Coarsen the output for one model

We can also use Rooki to regrid the data from one model onto a coarser grid. In this case, it may make more sense to use a conservative regridding method, which will conserve the physical fluxes between grid cells, rather than the nearest neighbors method we used in Example 1.

Get the data using intake-esgf and Rooki again

In this example, we’ll look at the annual mean near-surface air temperature for CESM2 in 2010.

cat = ESGFCatalog()
cat.search(
        activity_id='CMIP',
        experiment_id=["historical",],
        variable_id=["tas"],
        member_id='r1i1p1f1',
        grid_label='gn',
        table_id="Amon",
        source_id = [ "CESM2"]
    )

dsets = [separate_dataset_id(dataset) for dataset in list(cat.df.id.values)]
dsets
['CMIP6.CMIP.NCAR.CESM2.historical.r1i1p1f1.Amon.tas.gn.v20190308']

First, get the dataset with the original grid:

wf = ops.AverageByTime(
    ops.Subset(
        ops.Input('tas', [dsets[0]]),
        time='2010/2010'
    )
)

resp = wf.orchestrate()

if resp.ok:
    ds_og = resp.datasets()[0]
else:
    print(resp.status)
Downloading to /tmp/metalink_uq0kaw7t/tas_Amon_CESM2_historical_r1i1p1f1_gn_20100101-20100101_avg-year.nc.

Use the .grid attribute to get information on the native grid:

ds_og.grid
'native 0.9x1.25 finite volume grid (192x288 latxlon)'

The native grid is 0.9°x1.25°, so let’s try coarsening to a 1.25°x1.25° grid using the conservative method:

wf = ops.AverageByTime(
    ops.Regrid(
        ops.Subset(
            ops.Input('tas', [dsets[0]]),
            time='2010/2010'
        ),
        method='conservative',
        grid='1pt25deg'
    )
)

resp = wf.orchestrate()

if resp.ok:
    ds_125 = resp.datasets()[0]
else:
    print(resp.status)
    
Downloading to /tmp/metalink_hyrcwgl4/tas_Amon_CESM2_historical_r1i1p1f1_gr_20100101-20100101_avg-year.nc.
ds_125.grid
'Global 1.25 degree grid with one cell centered at 0E,0N. As used by ERA-40.'

We can also make it even coarser by regridding to a 2.5°x2.5° grid:

wf = ops.AverageByTime(
    ops.Regrid(
        ops.Subset(
            ops.Input('tas', [dsets[0]]),
            time='2010/2010'
        ),
        method='conservative',
        grid='2pt5deg'
    )
)

resp = wf.orchestrate()

if resp.ok:
    ds_25 = resp.datasets()[0]
else:
    print(resp.status)
    
Downloading to /tmp/metalink_6gn90143/tas_Amon_CESM2_historical_r1i1p1f1_gr_20100101-20100101_avg-year.nc.
ds_25.grid
'Global 2.5 degree grid with one cell centered at 1.25E,1.25N.'

Plot each dataset to look at the coarsened grids

Make a quick plot first:

for ds in [ds_og, ds_125, ds_25]:
    ds["tas"].plot()
    plt.show()
    
../_images/89890442113b0171d034a08149f548c799b0a701d57d9713549f71291aed93bf.png ../_images/d449925076c59dab607d2e3f5d9effe5df80364c08afa31767b10a296edacee5.png ../_images/1cbe0040c4a6b400a1c083340ad58556ec02ce780a0b829be2d66e5d4b612cb2.png

Plot the coarsened datsets together using Cartopy

Now let’s zoom in on a smaller region, the continental US, to get a clear view of the difference in grid resolution. Here we can also decrease the colorbar limits to better see how the variable tas varies within the smaller region.

# set up the figure
fig = plt.figure(figsize=(6, 8))
gs = GridSpec(3, 2, width_ratios=[1, 0.1], height_ratios=[1, 1, 1], hspace=0.3, wspace=0.2)

# specify the projection
proj = ccrs.PlateCarree()

# set up plot axes
ax1 = plt.subplot(gs[0, 0], projection=proj)
ax2 = plt.subplot(gs[1, 0], projection=proj)
ax3 = plt.subplot(gs[2, 0], projection=proj)
axes_list = [ax1, ax2, ax3]

# set up colorbar axis
axcb = plt.subplot(gs[:, 1])

# loop through each dataset and its corresponding axis
for i, dset in enumerate([ds_og, ds_125, ds_25]):
    plot_ds = dset.tas.isel(time=0)
    ax = axes_list[i]
    pcm = ax.pcolormesh(plot_ds.lon, plot_ds.lat, plot_ds, vmin=270, vmax=302.5, transform=proj)
    
    # add borders and coastlines
    ax.add_feature(cfeature.BORDERS)
    ax.coastlines()
    
    # limit to CONUS for this example
    ax.set_xlim(-130, -60)
    ax.set_ylim(22, 52)
    
    # add grid labels on bottom & left only
    gl = ax.gridlines(color="None", draw_labels=True)
    gl.top_labels = False
    gl.right_labels = False
    
    # label with the regrid type; if it fails, that means it hasn't been regridded
    # (so label with the grid attribute instead)
    try:
        ax.set_title(dset.regrid_operation)
    except:
        ax.set_title(dset.grid)
        
# use the same colorbar for all plots
axcb.axis("off")
axcb_ins = inset_axes(axcb, width="50%", height="75%", loc="center")
cbar = plt.colorbar(pcm, cax=axcb_ins, orientation="vertical", extend="both")
cbar.set_label("{n} ({u})".format(n=plot_ds.long_name, u=plot_ds.units))
        
plt.show()
/home/runner/miniconda3/envs/cookbook-dev/lib/python3.10/site-packages/cartopy/io/__init__.py:241: DownloadWarning: Downloading: https://naturalearth.s3.amazonaws.com/50m_cultural/ne_50m_admin_0_boundary_lines_land.zip
  warnings.warn(f'Downloading: {url}', DownloadWarning)
/home/runner/miniconda3/envs/cookbook-dev/lib/python3.10/site-packages/cartopy/io/__init__.py:241: DownloadWarning: Downloading: https://naturalearth.s3.amazonaws.com/50m_physical/ne_50m_coastline.zip
  warnings.warn(f'Downloading: {url}', DownloadWarning)
../_images/9f4d0a987a62ad23f57b5f0377e470253384e1e3902a90cf00f258924fbaa3fb.png

Summary

Rooki offers a quick and easy way to regrid CMIP model data that can be located using intake-esgf. Cartopy lets us easily customize the plot to neatly display the geospatial data.