Skip to article frontmatterSkip to article content

Intersections of Great Circles

Air traffic gif

Intersections of Great Circles


Overview

A great circle path crosses the entire planet and any two valid great circle paths will always intersect.

  1. Find the intersection of two great circle paths (always exists)
  2. Find the intersection of two great circle arcs (if it exists) (TODO)

Prerequisites

ConceptsImportanceNotes
NumpyNecessaryUsed to work with large arrays
PandasNecessaryUsed to read in and organize data (in particular dataframes)
Intro to CartopyHelpfulWill be used for adding maps to plotting
MatplotlibHelpfulWill be used for plotting
  • Time to learn: 40 minutes

Imports

  • Import Packages
  • Setup location dataframe with coordinates
import pandas as pd       # reading in data for location information from text file
import numpy as np        # working with arrays, vectors, cross/dot products, and radians

from pyproj import Geod   # working with the Earth as an ellipsod (WGS-84)
import geopy.distance     # working with the Earth as an ellipsod

import matplotlib.pyplot as plt                        # plotting a graph
from cartopy import crs as ccrs, feature as cfeature   # plotting a world map
# Get all Coordinates for Locations
location_df = pd.read_csv("../location_full_coords.txt")
location_df = location_df.rename(columns=lambda x: x.strip()) # strip excess white space from column names and values
location_df.head()
Loading...
location_df.index = location_df["name"]

Find the intersection of two great circle paths

The intersection of two great circle paths always exists at two positions on the globe if both paths are valid great circle paths (not meridians).

Math of intersection

TODO

# Generate Latitude Coordinates based on Longitude Coordinates
def generate_latitude_along_gc(start_point=None, end_point=None, number_of_lon_pts=360):
    lon1 = np.deg2rad(location_df.loc[start_point, "longitude"])
    lat1 = np.deg2rad(location_df.loc[start_point, "latitude"])
    lon2 = np.deg2rad(location_df.loc[end_point, "longitude"])
    lat2 = np.deg2rad(location_df.loc[end_point, "latitude"])

    # Verify not meridian (longitude passes through the poles)
    if np.sin(lon1 - lon2) == 0:
        print("Invalid inputs: start/end points are meridians")
        # plotting meridians at 0 longitude through all latitudes
        meridian_lat = np.arange(-90, 90, 180/len(longitude_lst)) # split in n number
        meridians = []
        for lat in meridian_lat:
            meridians.append((lat, 0))
        return meridians

    # verify not anitpodal (diametrically opposite, points)
    if lat1 + lat2 == 0 and abs(lon1-lon2) == np.pi:
        print("Invalid inputs: start/end points are antipodal")
        return []

    # note: can be expanded to handle input of np arrays by filter out antipodal/merdiain points

    # generate n total number of longitude points along the great circle
    # https://github.com/rspatial/geosphere/blob/master/R/greatCircle.R#L18C3-L18C7
    gc_lon_lst = []
    for lon in range(1, number_of_lon_pts+1):
        new_lon = (lon  * (360/number_of_lon_pts) - 180)
        gc_lon_lst.append(np.deg2rad(new_lon))

    # Intermediate points on a great circle: https://edwilliams.org/avform147.htm"
    gc_lat_lon = []
    for gc_lon in gc_lon_lst:
        num = np.sin(lat1)*np.cos(lat2)*np.sin(gc_lon-lon2)-np.sin(lat2)*np.cos(lat1)*np.sin(gc_lon-lon1)
        den = np.cos(lat1)*np.cos(lat2)*np.sin(lon1-lon2)
        new_lat = np.arctan(num/den)
        gc_lat_lon.append((np.rad2deg(new_lat), np.rad2deg(gc_lon)))
    return gc_lat_lon
lat_lon_pts = generate_latitude_along_gc("boulder", "boston", 360)
def intersection_of_gc(start_gc1=None, end_gc1=None,
                      start_gc2=None, end_gc2=None):
    # get normal of planes containing great circles

    # cross product of vectors
    normal_one = np.cross([location_df.loc[start_gc1, "cart_x"],
                           location_df.loc[start_gc1, "cart_y"],
                           location_df.loc[start_gc1, "cart_z"]],
                          [location_df.loc[end_gc1, "cart_x"],
                           location_df.loc[end_gc1, "cart_y"],
                           location_df.loc[end_gc1, "cart_z"]])
    normal_two = np.cross([location_df.loc[start_gc2, "cart_x"],
                           location_df.loc[start_gc2, "cart_y"],
                           location_df.loc[start_gc2, "cart_z"]],
                          [location_df.loc[end_gc2, "cart_x"],
                           location_df.loc[end_gc2, "cart_y"],
                           location_df.loc[end_gc2, "cart_z"]])
    # intersection of planes, normal to the poles of each plane
    line_of_intersection = np.cross(normal_one, normal_two)
    # intersection points (one on each side of the earth)
    x1 = line_of_intersection /  np.sqrt(line_of_intersection[0]**2 + line_of_intersection[1]**2 + line_of_intersection[2]**2) 
    x2 = -x1
    lat1 = np.rad2deg(np.arctan2(x1[2], np.sqrt(pow(x1[0],2)+pow(x1[1],2))))
    lon1 = np.rad2deg(np.arctan2(x1[1], x1[0]))
    lat2 = np.rad2deg(np.arctan2(x2[2], np.sqrt(pow(x2[0],2)+pow(x2[1],2))))
    lon2 = np.rad2deg(np.arctan2(x2[1], x2[0]))
    return [(lat1, lon1), (lat2, lon2)]
intersect_pts = intersection_of_gc("boulder", "boston", "greenwich", "cairo")
intersect_pts
[(np.float64(42.13833707967324), np.float64(-92.3589541022366)), (np.float64(-42.13833707967324), np.float64(87.6410458977634))]

Plot Intersections with Great Circle Paths

def interpolate_points_along_gc(start_point=None, end_point=None,
                                distance_between_points_meter=0): 
    geodesic = Geod(ellps="WGS84")
    
    lat_start = location_df.loc[start_point, "latitude"]
    lon_start = location_df.loc[start_point, "longitude"]
    lat_end = location_df.loc[end_point, "latitude"]
    lon_end = location_df.loc[end_point, "longitude"]

    lat_lon_points = [(lat_start, lon_start)]
    
    # move to next point when distance between points is less than the equal distance
    move_to_next_point = True
    while(move_to_next_point):
        forward_bearing, _, distance_meters = geodesic.inv(lon_start,
                                                            lat_start, 
                                                            lon_end,
                                                            lat_end)
        if distance_meters < distance_between_points_meter:
            # ends before overshooting
            move_to_next_point = False
        else:
            start_point = geopy.Point(lat_start, lon_start)
            distance_to_move = geopy.distance.distance(
                            kilometers=distance_between_points_meter /
                            1000)  # distance to move towards the next point
            final_position = distance_to_move.destination(
                            start_point, bearing=forward_bearing)
            lat_lon_points.append((final_position.latitude, final_position.longitude))
            # new starting position is newly found end position
            lon_start, lat_start = final_position.longitude, final_position.latitude
    lat_lon_points.append((lat_end, lon_end))
    return lat_lon_points

def arc_points(start_point=None, end_point=None,
               n_total_points=10):
    start_lat = location_df.loc[start_point, "latitude"]
    start_lon = location_df.loc[start_point, "longitude"]
    end_lat = location_df.loc[end_point, "latitude"]
    end_lon = location_df.loc[end_point, "longitude"]

    geodesic = Geod(ellps="WGS84")

    _, _, distance_meter =  geodesic.inv(start_lon,
                                        start_lat,
                                        end_lon,
                                        end_lat)
        
    distance_between_points_meter = distance_meter / (n_total_points + 1)

    
    points_along_arc = interpolate_points_along_gc(start_point, end_point,
                                              distance_between_points_meter)
    return points_along_arc

def plot_gc_with_intersection(start_gc1=None, end_gc1=None,
                             start_gc2=None, end_gc2=None,
                             lon_west=-180, lon_east=180,
                             lat_south=-90, lat_north=90):
    # Set up world map plot
    fig = plt.subplots(figsize=(15, 10))
    projection_map = ccrs.PlateCarree()
    ax = plt.axes(projection=projection_map)
    ax.set_extent([lon_west, lon_east, lat_south, lat_north], crs=projection_map)
    ax.coastlines(color="black")
    ax.add_feature(cfeature.STATES, edgecolor="black")

    # Plot Great Circle Path
    gc_one_lat_pts = generate_latitude_along_gc(start_gc1, end_gc1)
    longitudes = [x[1] for x in gc_one_lat_pts] # longitude
    latitudes = [x[0] for x in gc_one_lat_pts] # latitude
    plt.plot(longitudes, latitudes)
    gc_two_lat_pts = generate_latitude_along_gc(start_gc2, end_gc2)
    longitudes = [x[1] for x in gc_two_lat_pts] # longitude
    latitudes = [x[0] for x in gc_two_lat_pts] # latitude
    plt.plot(longitudes, latitudes)

    # Plot intersection point
    intersection_point = intersection_of_gc(start_gc1, end_gc1,
                                            start_gc2, end_gc2)
    longitudes = [x[1] for x in intersection_point] # longitude
    latitudes = [x[0] for x in intersection_point] # latitude
    plt.scatter(longitudes, latitudes, s=200, c="purple", label="intersection")

    # Plot Great Circle Arc
    gc_one_arc_pts = arc_points(start_gc1, end_gc1)
    longitudes = [x[1] for x in gc_one_arc_pts] # longitude
    latitudes = [x[0] for x in gc_one_arc_pts] # latitude
    plt.plot(longitudes, latitudes, c="pink", label="GC 1")
    plt.scatter(longitudes[0], latitudes[0], s=100, c="green", label="Arc Start")
    plt.scatter(longitudes[-1], latitudes[-1],s=100, c="red", label="Arc End")

    gc_two_arc_pts = arc_points(start_gc2, end_gc2)
    longitudes = [x[1] for x in gc_two_arc_pts] # longitude
    latitudes = [x[0] for x in gc_two_arc_pts] # latitude
    plt.plot(longitudes, latitudes, c="cyan", label="GC 2")
    plt.scatter(longitudes[0], latitudes[0],s=100, c="green")
    plt.scatter(longitudes[-1], latitudes[-1],s=100, c="red")

    plt.legend(loc="lower left")
    plt.title(f"Intersection Point = {intersection_point}")
    plt.show()
plot_gc_with_intersection("boulder", "boston", "greenwich", "cairo")
/home/runner/micromamba/envs/cookbook-gc/lib/python3.13/site-packages/cartopy/io/__init__.py:241: DownloadWarning: Downloading: https://naturalearth.s3.amazonaws.com/110m_physical/ne_110m_coastline.zip
  warnings.warn(f'Downloading: {url}', DownloadWarning)
/home/runner/micromamba/envs/cookbook-gc/lib/python3.13/site-packages/cartopy/io/__init__.py:241: DownloadWarning: Downloading: https://naturalearth.s3.amazonaws.com/110m_cultural/ne_110m_admin_1_states_provinces_lakes.zip
  warnings.warn(f'Downloading: {url}', DownloadWarning)
<Figure size 1500x1000 with 2 Axes>
plot_gc_with_intersection("arecibo", "zambezi", "johannesburg", "reykjavík")
<Figure size 1500x1000 with 2 Axes>

Find the intersection of two great circle arcs (TODO)

The intersection of two great circle paths always exists at two positions on the globem but intersections do not always exists along the great circle arcs.


Summary

What’s next?

Angles and Great Circles

Resources and references