Skip to article frontmatterSkip to article content

https://pyresample.readthedocs.io/en/latest/

This package seems a bit more speciallized, and does not have as tight of integration with xarray like xESMF and Verde do. If working with satellite or swath data, this is not one to miss! This package integrates with Satpy https://satpy.readthedocs.io/en/stable/ .

(more) Integration with xarray

Prerequisites

Knowing your way around xarray, numpy is beneficial. This is not deisgned to be an introduction to any of those packages. Would do this notebook after doing the xESMF one!

Imports

import pandas as pd
import numpy as np
import xarray as xr

import matplotlib.pyplot as plt

from appdirs import *

import dask.array as da

import pyresample
from pyresample import image, geometry
from pyresample.bilinear import NumpyBilinearResampler

from xarray import DataArray
from pyresample.bilinear import XArrayBilinearResampler

import os
%load_ext watermark
%watermark --iversions
dask      : 2025.7.0
numpy     : 2.2.6
xarray    : 2025.7.1
matplotlib: 3.10.3
pyresample: 1.34.2
pandas    : 2.3.1
sys       : 3.13.5 | packaged by conda-forge | (main, Jun 16 2025, 08:27:50) [GCC 13.3.0]
appdirs   : 1.4.4

Loading in one netCDF

file = '../data/onestorm.nc'

Let’s open this file with xarray:

ds = xr.open_dataset(file)
ds
Loading...

Trying to do the same thing with pyresample:

from pyresample.utils import load_cf_area
area_def, cf_info = load_cf_area('data/onestorm.nc', variable='visible', x='x', y='y')
---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)
File ~/micromamba/envs/gridding-cookbook-dev/lib/python3.13/site-packages/xarray/backends/file_manager.py:211, in CachingFileManager._acquire_with_cache_info(self, needs_lock)
    210 try:
--> 211     file = self._cache[self._key]
    212 except KeyError:

File ~/micromamba/envs/gridding-cookbook-dev/lib/python3.13/site-packages/xarray/backends/lru_cache.py:56, in LRUCache.__getitem__(self, key)
     55 with self._lock:
---> 56     value = self._cache[key]
     57     self._cache.move_to_end(key)

KeyError: [<class 'netCDF4._netCDF4.Dataset'>, ('/home/runner/work/gridding-cookbook/gridding-cookbook/notebooks/data/onestorm.nc',), 'r', (('clobber', True), ('diskless', False), ('format', 'NETCDF4'), ('persist', False)), '8c5c6689-ec15-458e-a7f9-4b0d237f0afb']

During handling of the above exception, another exception occurred:

FileNotFoundError                         Traceback (most recent call last)
Cell In[6], line 1
----> 1 area_def, cf_info = load_cf_area('data/onestorm.nc', variable='visible', x='x', y='y')

File ~/micromamba/envs/gridding-cookbook-dev/lib/python3.13/site-packages/pyresample/utils/cf.py:444, in load_cf_area(nc_file, variable, y, x)
    441 if (x is not None and y is None) or (x is None and y is not None):
    442     raise ValueError("You must specify both or neither of x= and y=")
--> 444 nc_handle = _open_nc_file(nc_file)
    445 if variable is None:
    446     # if the variable=None, we search through all variables
    447     area_def, cf_info = _load_cf_area_several_variables(nc_handle)

File ~/micromamba/envs/gridding-cookbook-dev/lib/python3.13/site-packages/pyresample/utils/cf.py:478, in _open_nc_file(nc_file)
    475 if isinstance(nc_file, xr.Dataset):
    476     return nc_file
--> 478 return xr.open_dataset(nc_file)

File ~/micromamba/envs/gridding-cookbook-dev/lib/python3.13/site-packages/xarray/backends/api.py:715, in open_dataset(filename_or_obj, engine, chunks, cache, decode_cf, mask_and_scale, decode_times, decode_timedelta, use_cftime, concat_characters, decode_coords, drop_variables, create_default_indexes, inline_array, chunked_array_type, from_array_kwargs, backend_kwargs, **kwargs)
    703 decoders = _resolve_decoders_kwargs(
    704     decode_cf,
    705     open_backend_dataset_parameters=backend.open_dataset_parameters,
   (...)    711     decode_coords=decode_coords,
    712 )
    714 overwrite_encoded_chunks = kwargs.pop("overwrite_encoded_chunks", None)
--> 715 backend_ds = backend.open_dataset(
    716     filename_or_obj,
    717     drop_variables=drop_variables,
    718     **decoders,
    719     **kwargs,
    720 )
    721 ds = _dataset_from_backend_dataset(
    722     backend_ds,
    723     filename_or_obj,
   (...)    734     **kwargs,
    735 )
    736 return ds

File ~/micromamba/envs/gridding-cookbook-dev/lib/python3.13/site-packages/xarray/backends/netCDF4_.py:671, in NetCDF4BackendEntrypoint.open_dataset(self, filename_or_obj, mask_and_scale, decode_times, concat_characters, decode_coords, drop_variables, use_cftime, decode_timedelta, group, mode, format, clobber, diskless, persist, auto_complex, lock, autoclose)
    649 def open_dataset(
    650     self,
    651     filename_or_obj: str | os.PathLike[Any] | ReadBuffer | AbstractDataStore,
   (...)    668     autoclose=False,
    669 ) -> Dataset:
    670     filename_or_obj = _normalize_path(filename_or_obj)
--> 671     store = NetCDF4DataStore.open(
    672         filename_or_obj,
    673         mode=mode,
    674         format=format,
    675         group=group,
    676         clobber=clobber,
    677         diskless=diskless,
    678         persist=persist,
    679         auto_complex=auto_complex,
    680         lock=lock,
    681         autoclose=autoclose,
    682     )
    684     store_entrypoint = StoreBackendEntrypoint()
    685     with close_on_error(store):

File ~/micromamba/envs/gridding-cookbook-dev/lib/python3.13/site-packages/xarray/backends/netCDF4_.py:457, in NetCDF4DataStore.open(cls, filename, mode, format, group, clobber, diskless, persist, auto_complex, lock, lock_maker, autoclose)
    453     kwargs["auto_complex"] = auto_complex
    454 manager = CachingFileManager(
    455     netCDF4.Dataset, filename, mode=mode, kwargs=kwargs
    456 )
--> 457 return cls(manager, group=group, mode=mode, lock=lock, autoclose=autoclose)

File ~/micromamba/envs/gridding-cookbook-dev/lib/python3.13/site-packages/xarray/backends/netCDF4_.py:398, in NetCDF4DataStore.__init__(self, manager, group, mode, lock, autoclose)
    396 self._group = group
    397 self._mode = mode
--> 398 self.format = self.ds.data_model
    399 self._filename = self.ds.filepath()
    400 self.is_remote = is_remote_uri(self._filename)

File ~/micromamba/envs/gridding-cookbook-dev/lib/python3.13/site-packages/xarray/backends/netCDF4_.py:466, in NetCDF4DataStore.ds(self)
    464 @property
    465 def ds(self):
--> 466     return self._acquire()

File ~/micromamba/envs/gridding-cookbook-dev/lib/python3.13/site-packages/xarray/backends/netCDF4_.py:460, in NetCDF4DataStore._acquire(self, needs_lock)
    459 def _acquire(self, needs_lock=True):
--> 460     with self._manager.acquire_context(needs_lock) as root:
    461         ds = _nc4_require_group(root, self._group, self._mode)
    462     return ds

File ~/micromamba/envs/gridding-cookbook-dev/lib/python3.13/contextlib.py:141, in _GeneratorContextManager.__enter__(self)
    139 del self.args, self.kwds, self.func
    140 try:
--> 141     return next(self.gen)
    142 except StopIteration:
    143     raise RuntimeError("generator didn't yield") from None

File ~/micromamba/envs/gridding-cookbook-dev/lib/python3.13/site-packages/xarray/backends/file_manager.py:199, in CachingFileManager.acquire_context(self, needs_lock)
    196 @contextlib.contextmanager
    197 def acquire_context(self, needs_lock=True):
    198     """Context manager for acquiring a file."""
--> 199     file, cached = self._acquire_with_cache_info(needs_lock)
    200     try:
    201         yield file

File ~/micromamba/envs/gridding-cookbook-dev/lib/python3.13/site-packages/xarray/backends/file_manager.py:217, in CachingFileManager._acquire_with_cache_info(self, needs_lock)
    215     kwargs = kwargs.copy()
    216     kwargs["mode"] = self._mode
--> 217 file = self._opener(*self._args, **kwargs)
    218 if self._mode == "w":
    219     # ensure file doesn't get overridden when opened again
    220     self._mode = "a"

File src/netCDF4/_netCDF4.pyx:2521, in netCDF4._netCDF4.Dataset.__init__()

File src/netCDF4/_netCDF4.pyx:2158, in netCDF4._netCDF4._ensure_nc_success()

FileNotFoundError: [Errno 2] No such file or directory: '/home/runner/work/gridding-cookbook/gridding-cookbook/notebooks/data/onestorm.nc'

This is supposed to fail. Will chat about pro’s and con’s in the summary.

Resampling of gridded data using pyresample

Link to this turtorial is here: https://pyresample.readthedocs.io/en/latest/swath.html#pyresample-bilinear

We will be deconstructing it a bit to get into the details, but all of the code is from the above link.

target_def = geometry.AreaDefinition('areaD',
                                     'Europe (3km, HRV, VTC)',
                                     'areaD',
                                     {'a': '6378144.0', 'b': '6356759.0',
                                      'lat_0': '50.00', 'lat_ts': '50.00',
                                      'lon_0': '8.00', 'proj': 'stere'},
                                     800, 800,
                                     [-1370912.72, -909968.64,
                                      1029087.28, 1490031.36])

Unlike using xESMF, this does not depend or work with xarray:

print('target def type', type(target_def))
target def type <class 'pyresample.geometry.AreaDefinition'>
data = DataArray(da.from_array(np.fromfunction(lambda y, x: y*x, (500, 100))), dims=('y', 'x'))
type(data)
xarray.core.dataarray.DataArray
lons = da.from_array(np.fromfunction(lambda y, x: 3 + x * 0.1, (500, 100)))
lats = da.from_array(np.fromfunction(lambda y, x: 75 - y * 0.1, (500, 100)))
source_def = geometry.SwathDefinition(lons=lons, lats=lats)
resampler = XArrayBilinearResampler(source_def, target_def, 30e3)
result = resampler.resample(data)
type(result)
/home/runner/micromamba/envs/gridding-cookbook-dev/lib/python3.13/site-packages/pyproj/crs/crs.py:1295: UserWarning: You will likely lose important projection information when converting to a PROJ string from another format. See: https://proj.org/faq.html#what-is-the-best-format-for-describing-coordinate-reference-systems
  proj = self._crs.to_proj4(version=version)
xarray.core.dataarray.DataArray

Can export to xarray

result.to_dataset()
Loading...
data.to_dataset()
Loading...

Summary

Pyresample is a speciallist program, with strong functionality with satpy. Would reccomend if swath/sat image data is part of your normal workflow. For others, the requirement of the data being CF compliant and API is a hurdle.