https://
This package seems a bit more speciallized, and does not have as tight of integration with xarray like xESMF and Verde do. If working with satellite or swath data, this is not one to miss! This package integrates with Satpy https://
(more) Integration with xarray¶
This is on the to-do list: https://
Prerequisites¶
Knowing your way around xarray, numpy is beneficial. This is not deisgned to be an introduction to any of those packages. Would do this notebook after doing the xESMF one!
Imports¶
import pandas as pd
import numpy as np
import xarray as xr
import matplotlib.pyplot as plt
from appdirs import *
import dask.array as da
import pyresample
from pyresample import image, geometry
from pyresample.bilinear import NumpyBilinearResampler
from xarray import DataArray
from pyresample.bilinear import XArrayBilinearResampler
import os%load_ext watermark
%watermark --iversionsnumpy : 2.3.5
sys : 3.13.9 | packaged by conda-forge | (main, Oct 22 2025, 23:33:35) [GCC 14.3.0]
matplotlib: 3.10.8
dask : 2025.11.0
appdirs : 1.4.4
pyresample: 1.34.2
xarray : 2025.11.0
pandas : 2.3.3
Loading in one netCDF¶
file = '../data/onestorm.nc'Let’s open this file with xarray:
ds = xr.open_dataset(file)
dsTrying to do the same thing with pyresample:
from pyresample.utils import load_cf_areaarea_def, cf_info = load_cf_area('data/onestorm.nc', variable='visible', x='x', y='y')---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
File ~/micromamba/envs/gridding-cookbook-dev/lib/python3.13/site-packages/xarray/backends/file_manager.py:219, in CachingFileManager._acquire_with_cache_info(self, needs_lock)
218 try:
--> 219 file = self._cache[self._key]
220 except KeyError:
File ~/micromamba/envs/gridding-cookbook-dev/lib/python3.13/site-packages/xarray/backends/lru_cache.py:56, in LRUCache.__getitem__(self, key)
55 with self._lock:
---> 56 value = self._cache[key]
57 self._cache.move_to_end(key)
KeyError: [<class 'netCDF4._netCDF4.Dataset'>, ('/home/runner/work/gridding-cookbook/gridding-cookbook/notebooks/data/onestorm.nc',), 'r', (('clobber', True), ('diskless', False), ('format', 'NETCDF4'), ('persist', False)), '53cd6e09-5d96-4949-8787-1fec58b769f3']
During handling of the above exception, another exception occurred:
FileNotFoundError Traceback (most recent call last)
Cell In[6], line 1
----> 1 area_def, cf_info = load_cf_area('data/onestorm.nc', variable='visible', x='x', y='y')
File ~/micromamba/envs/gridding-cookbook-dev/lib/python3.13/site-packages/pyresample/utils/cf.py:444, in load_cf_area(nc_file, variable, y, x)
441 if (x is not None and y is None) or (x is None and y is not None):
442 raise ValueError("You must specify both or neither of x= and y=")
--> 444 nc_handle = _open_nc_file(nc_file)
445 if variable is None:
446 # if the variable=None, we search through all variables
447 area_def, cf_info = _load_cf_area_several_variables(nc_handle)
File ~/micromamba/envs/gridding-cookbook-dev/lib/python3.13/site-packages/pyresample/utils/cf.py:478, in _open_nc_file(nc_file)
475 if isinstance(nc_file, xr.Dataset):
476 return nc_file
--> 478 return xr.open_dataset(nc_file)
File ~/micromamba/envs/gridding-cookbook-dev/lib/python3.13/site-packages/xarray/backends/api.py:606, in open_dataset(filename_or_obj, engine, chunks, cache, decode_cf, mask_and_scale, decode_times, decode_timedelta, use_cftime, concat_characters, decode_coords, drop_variables, create_default_indexes, inline_array, chunked_array_type, from_array_kwargs, backend_kwargs, **kwargs)
594 decoders = _resolve_decoders_kwargs(
595 decode_cf,
596 open_backend_dataset_parameters=backend.open_dataset_parameters,
(...) 602 decode_coords=decode_coords,
603 )
605 overwrite_encoded_chunks = kwargs.pop("overwrite_encoded_chunks", None)
--> 606 backend_ds = backend.open_dataset(
607 filename_or_obj,
608 drop_variables=drop_variables,
609 **decoders,
610 **kwargs,
611 )
612 ds = _dataset_from_backend_dataset(
613 backend_ds,
614 filename_or_obj,
(...) 625 **kwargs,
626 )
627 return ds
File ~/micromamba/envs/gridding-cookbook-dev/lib/python3.13/site-packages/xarray/backends/netCDF4_.py:758, in NetCDF4BackendEntrypoint.open_dataset(self, filename_or_obj, mask_and_scale, decode_times, concat_characters, decode_coords, drop_variables, use_cftime, decode_timedelta, group, mode, format, clobber, diskless, persist, auto_complex, lock, autoclose)
736 def open_dataset(
737 self,
738 filename_or_obj: T_PathFileOrDataStore,
(...) 755 autoclose=False,
756 ) -> Dataset:
757 filename_or_obj = _normalize_path(filename_or_obj)
--> 758 store = NetCDF4DataStore.open(
759 filename_or_obj,
760 mode=mode,
761 format=format,
762 group=group,
763 clobber=clobber,
764 diskless=diskless,
765 persist=persist,
766 auto_complex=auto_complex,
767 lock=lock,
768 autoclose=autoclose,
769 )
771 store_entrypoint = StoreBackendEntrypoint()
772 with close_on_error(store):
File ~/micromamba/envs/gridding-cookbook-dev/lib/python3.13/site-packages/xarray/backends/netCDF4_.py:525, in NetCDF4DataStore.open(cls, filename, mode, format, group, clobber, diskless, persist, auto_complex, lock, lock_maker, autoclose)
521 else:
522 manager = CachingFileManager(
523 netCDF4.Dataset, filename, mode=mode, kwargs=kwargs
524 )
--> 525 return cls(manager, group=group, mode=mode, lock=lock, autoclose=autoclose)
File ~/micromamba/envs/gridding-cookbook-dev/lib/python3.13/site-packages/xarray/backends/netCDF4_.py:429, in NetCDF4DataStore.__init__(self, manager, group, mode, lock, autoclose)
427 self._group = group
428 self._mode = mode
--> 429 self.format = self.ds.data_model
430 self._filename = self.ds.filepath()
431 self.is_remote = is_remote_uri(self._filename)
File ~/micromamba/envs/gridding-cookbook-dev/lib/python3.13/site-packages/xarray/backends/netCDF4_.py:534, in NetCDF4DataStore.ds(self)
532 @property
533 def ds(self):
--> 534 return self._acquire()
File ~/micromamba/envs/gridding-cookbook-dev/lib/python3.13/site-packages/xarray/backends/netCDF4_.py:528, in NetCDF4DataStore._acquire(self, needs_lock)
527 def _acquire(self, needs_lock=True):
--> 528 with self._manager.acquire_context(needs_lock) as root:
529 ds = _nc4_require_group(root, self._group, self._mode)
530 return ds
File ~/micromamba/envs/gridding-cookbook-dev/lib/python3.13/contextlib.py:141, in _GeneratorContextManager.__enter__(self)
139 del self.args, self.kwds, self.func
140 try:
--> 141 return next(self.gen)
142 except StopIteration:
143 raise RuntimeError("generator didn't yield") from None
File ~/micromamba/envs/gridding-cookbook-dev/lib/python3.13/site-packages/xarray/backends/file_manager.py:207, in CachingFileManager.acquire_context(self, needs_lock)
204 @contextmanager
205 def acquire_context(self, needs_lock: bool = True) -> Iterator[T_File]:
206 """Context manager for acquiring a file."""
--> 207 file, cached = self._acquire_with_cache_info(needs_lock)
208 try:
209 yield file
File ~/micromamba/envs/gridding-cookbook-dev/lib/python3.13/site-packages/xarray/backends/file_manager.py:225, in CachingFileManager._acquire_with_cache_info(self, needs_lock)
223 kwargs = kwargs.copy()
224 kwargs["mode"] = self._mode
--> 225 file = self._opener(*self._args, **kwargs)
226 if self._mode == "w":
227 # ensure file doesn't get overridden when opened again
228 self._mode = "a"
File src/netCDF4/_netCDF4.pyx:2517, in netCDF4._netCDF4.Dataset.__init__()
File src/netCDF4/_netCDF4.pyx:2154, in netCDF4._netCDF4._ensure_nc_success()
FileNotFoundError: [Errno 2] No such file or directory: '/home/runner/work/gridding-cookbook/gridding-cookbook/notebooks/data/onestorm.nc'This is supposed to fail. Will chat about pro’s and con’s in the summary.
Resampling of gridded data using pyresample¶
Link to this turtorial is here: https://
We will be deconstructing it a bit to get into the details, but all of the code is from the above link.
target_def = geometry.AreaDefinition('areaD',
'Europe (3km, HRV, VTC)',
'areaD',
{'a': '6378144.0', 'b': '6356759.0',
'lat_0': '50.00', 'lat_ts': '50.00',
'lon_0': '8.00', 'proj': 'stere'},
800, 800,
[-1370912.72, -909968.64,
1029087.28, 1490031.36])Unlike using xESMF, this does not depend or work with xarray:
print('target def type', type(target_def))target def type <class 'pyresample.geometry.AreaDefinition'>
data = DataArray(da.from_array(np.fromfunction(lambda y, x: y*x, (500, 100))), dims=('y', 'x'))
type(data)xarray.core.dataarray.DataArraylons = da.from_array(np.fromfunction(lambda y, x: 3 + x * 0.1, (500, 100)))
lats = da.from_array(np.fromfunction(lambda y, x: 75 - y * 0.1, (500, 100)))
source_def = geometry.SwathDefinition(lons=lons, lats=lats)resampler = XArrayBilinearResampler(source_def, target_def, 30e3)
result = resampler.resample(data)
type(result)/home/runner/micromamba/envs/gridding-cookbook-dev/lib/python3.13/site-packages/pyproj/crs/crs.py:1295: UserWarning: You will likely lose important projection information when converting to a PROJ string from another format. See: https://proj.org/faq.html#what-is-the-best-format-for-describing-coordinate-reference-systems
proj = self._crs.to_proj4(version=version)
xarray.core.dataarray.DataArrayCan export to xarray¶
result.to_dataset()data.to_dataset()Summary¶
Pyresample is a speciallist program, with strong functionality with satpy. Would reccomend if swath/sat image data is part of your normal workflow. For others, the requirement of the data being CF compliant and API is a hurdle.