https://
This package seems a bit more speciallized, and does not have as tight of integration with xarray like xESMF and Verde do. If working with satellite or swath data, this is not one to miss! This package integrates with Satpy https://
(more) Integration with xarray¶
This is on the to-do list: https://
Prerequisites¶
Knowing your way around xarray, numpy is beneficial. This is not deisgned to be an introduction to any of those packages. Would do this notebook after doing the xESMF one!
Imports¶
import pandas as pd
import numpy as np
import xarray as xr
import matplotlib.pyplot as plt
from appdirs import *
import dask.array as da
import pyresample
from pyresample import image, geometry
from pyresample.bilinear import NumpyBilinearResampler
from xarray import DataArray
from pyresample.bilinear import XArrayBilinearResampler
import os
%load_ext watermark
%watermark --iversions
xarray : 2025.6.1
appdirs : 1.4.4
dask : 2025.5.1
sys : 3.13.5 | packaged by conda-forge | (main, Jun 16 2025, 08:27:50) [GCC 13.3.0]
numpy : 2.2.6
matplotlib: 3.10.3
pyresample: 1.34.2
pandas : 2.3.0
Loading in one netCDF¶
file = '../data/onestorm.nc'
Let’s open this file with xarray:
ds = xr.open_dataset(file)
ds
Trying to do the same thing with pyresample:
from pyresample.utils import load_cf_area
area_def, cf_info = load_cf_area('data/onestorm.nc', variable='visible', x='x', y='y')
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
File ~/micromamba/envs/gridding-cookbook-dev/lib/python3.13/site-packages/xarray/backends/file_manager.py:211, in CachingFileManager._acquire_with_cache_info(self, needs_lock)
210 try:
--> 211 file = self._cache[self._key]
212 except KeyError:
File ~/micromamba/envs/gridding-cookbook-dev/lib/python3.13/site-packages/xarray/backends/lru_cache.py:56, in LRUCache.__getitem__(self, key)
55 with self._lock:
---> 56 value = self._cache[key]
57 self._cache.move_to_end(key)
KeyError: [<class 'netCDF4._netCDF4.Dataset'>, ('/home/runner/work/gridding-cookbook/gridding-cookbook/notebooks/data/onestorm.nc',), 'r', (('clobber', True), ('diskless', False), ('format', 'NETCDF4'), ('persist', False)), 'b660bdca-eb6b-4166-b9cb-dc22993e277a']
During handling of the above exception, another exception occurred:
FileNotFoundError Traceback (most recent call last)
Cell In[6], line 1
----> 1 area_def, cf_info = load_cf_area('data/onestorm.nc', variable='visible', x='x', y='y')
File ~/micromamba/envs/gridding-cookbook-dev/lib/python3.13/site-packages/pyresample/utils/cf.py:444, in load_cf_area(nc_file, variable, y, x)
441 if (x is not None and y is None) or (x is None and y is not None):
442 raise ValueError("You must specify both or neither of x= and y=")
--> 444 nc_handle = _open_nc_file(nc_file)
445 if variable is None:
446 # if the variable=None, we search through all variables
447 area_def, cf_info = _load_cf_area_several_variables(nc_handle)
File ~/micromamba/envs/gridding-cookbook-dev/lib/python3.13/site-packages/pyresample/utils/cf.py:478, in _open_nc_file(nc_file)
475 if isinstance(nc_file, xr.Dataset):
476 return nc_file
--> 478 return xr.open_dataset(nc_file)
File ~/micromamba/envs/gridding-cookbook-dev/lib/python3.13/site-packages/xarray/backends/api.py:687, in open_dataset(filename_or_obj, engine, chunks, cache, decode_cf, mask_and_scale, decode_times, decode_timedelta, use_cftime, concat_characters, decode_coords, drop_variables, inline_array, chunked_array_type, from_array_kwargs, backend_kwargs, **kwargs)
675 decoders = _resolve_decoders_kwargs(
676 decode_cf,
677 open_backend_dataset_parameters=backend.open_dataset_parameters,
(...) 683 decode_coords=decode_coords,
684 )
686 overwrite_encoded_chunks = kwargs.pop("overwrite_encoded_chunks", None)
--> 687 backend_ds = backend.open_dataset(
688 filename_or_obj,
689 drop_variables=drop_variables,
690 **decoders,
691 **kwargs,
692 )
693 ds = _dataset_from_backend_dataset(
694 backend_ds,
695 filename_or_obj,
(...) 705 **kwargs,
706 )
707 return ds
File ~/micromamba/envs/gridding-cookbook-dev/lib/python3.13/site-packages/xarray/backends/netCDF4_.py:666, in NetCDF4BackendEntrypoint.open_dataset(self, filename_or_obj, mask_and_scale, decode_times, concat_characters, decode_coords, drop_variables, use_cftime, decode_timedelta, group, mode, format, clobber, diskless, persist, auto_complex, lock, autoclose)
644 def open_dataset(
645 self,
646 filename_or_obj: str | os.PathLike[Any] | ReadBuffer | AbstractDataStore,
(...) 663 autoclose=False,
664 ) -> Dataset:
665 filename_or_obj = _normalize_path(filename_or_obj)
--> 666 store = NetCDF4DataStore.open(
667 filename_or_obj,
668 mode=mode,
669 format=format,
670 group=group,
671 clobber=clobber,
672 diskless=diskless,
673 persist=persist,
674 auto_complex=auto_complex,
675 lock=lock,
676 autoclose=autoclose,
677 )
679 store_entrypoint = StoreBackendEntrypoint()
680 with close_on_error(store):
File ~/micromamba/envs/gridding-cookbook-dev/lib/python3.13/site-packages/xarray/backends/netCDF4_.py:452, in NetCDF4DataStore.open(cls, filename, mode, format, group, clobber, diskless, persist, auto_complex, lock, lock_maker, autoclose)
448 kwargs["auto_complex"] = auto_complex
449 manager = CachingFileManager(
450 netCDF4.Dataset, filename, mode=mode, kwargs=kwargs
451 )
--> 452 return cls(manager, group=group, mode=mode, lock=lock, autoclose=autoclose)
File ~/micromamba/envs/gridding-cookbook-dev/lib/python3.13/site-packages/xarray/backends/netCDF4_.py:393, in NetCDF4DataStore.__init__(self, manager, group, mode, lock, autoclose)
391 self._group = group
392 self._mode = mode
--> 393 self.format = self.ds.data_model
394 self._filename = self.ds.filepath()
395 self.is_remote = is_remote_uri(self._filename)
File ~/micromamba/envs/gridding-cookbook-dev/lib/python3.13/site-packages/xarray/backends/netCDF4_.py:461, in NetCDF4DataStore.ds(self)
459 @property
460 def ds(self):
--> 461 return self._acquire()
File ~/micromamba/envs/gridding-cookbook-dev/lib/python3.13/site-packages/xarray/backends/netCDF4_.py:455, in NetCDF4DataStore._acquire(self, needs_lock)
454 def _acquire(self, needs_lock=True):
--> 455 with self._manager.acquire_context(needs_lock) as root:
456 ds = _nc4_require_group(root, self._group, self._mode)
457 return ds
File ~/micromamba/envs/gridding-cookbook-dev/lib/python3.13/contextlib.py:141, in _GeneratorContextManager.__enter__(self)
139 del self.args, self.kwds, self.func
140 try:
--> 141 return next(self.gen)
142 except StopIteration:
143 raise RuntimeError("generator didn't yield") from None
File ~/micromamba/envs/gridding-cookbook-dev/lib/python3.13/site-packages/xarray/backends/file_manager.py:199, in CachingFileManager.acquire_context(self, needs_lock)
196 @contextlib.contextmanager
197 def acquire_context(self, needs_lock=True):
198 """Context manager for acquiring a file."""
--> 199 file, cached = self._acquire_with_cache_info(needs_lock)
200 try:
201 yield file
File ~/micromamba/envs/gridding-cookbook-dev/lib/python3.13/site-packages/xarray/backends/file_manager.py:217, in CachingFileManager._acquire_with_cache_info(self, needs_lock)
215 kwargs = kwargs.copy()
216 kwargs["mode"] = self._mode
--> 217 file = self._opener(*self._args, **kwargs)
218 if self._mode == "w":
219 # ensure file doesn't get overridden when opened again
220 self._mode = "a"
File src/netCDF4/_netCDF4.pyx:2521, in netCDF4._netCDF4.Dataset.__init__()
File src/netCDF4/_netCDF4.pyx:2158, in netCDF4._netCDF4._ensure_nc_success()
FileNotFoundError: [Errno 2] No such file or directory: '/home/runner/work/gridding-cookbook/gridding-cookbook/notebooks/data/onestorm.nc'
This is supposed to fail. Will chat about pro’s and con’s in the summary.
Resampling of gridded data using pyresample¶
Link to this turtorial is here: https://
We will be deconstructing it a bit to get into the details, but all of the code is from the above link.
target_def = geometry.AreaDefinition('areaD',
'Europe (3km, HRV, VTC)',
'areaD',
{'a': '6378144.0', 'b': '6356759.0',
'lat_0': '50.00', 'lat_ts': '50.00',
'lon_0': '8.00', 'proj': 'stere'},
800, 800,
[-1370912.72, -909968.64,
1029087.28, 1490031.36])
Unlike using xESMF, this does not depend or work with xarray:
print('target def type', type(target_def))
target def type <class 'pyresample.geometry.AreaDefinition'>
data = DataArray(da.from_array(np.fromfunction(lambda y, x: y*x, (500, 100))), dims=('y', 'x'))
type(data)
xarray.core.dataarray.DataArray
lons = da.from_array(np.fromfunction(lambda y, x: 3 + x * 0.1, (500, 100)))
lats = da.from_array(np.fromfunction(lambda y, x: 75 - y * 0.1, (500, 100)))
source_def = geometry.SwathDefinition(lons=lons, lats=lats)
resampler = XArrayBilinearResampler(source_def, target_def, 30e3)
result = resampler.resample(data)
type(result)
/home/runner/micromamba/envs/gridding-cookbook-dev/lib/python3.13/site-packages/pyproj/crs/crs.py:1295: UserWarning: You will likely lose important projection information when converting to a PROJ string from another format. See: https://proj.org/faq.html#what-is-the-best-format-for-describing-coordinate-reference-systems
proj = self._crs.to_proj4(version=version)
xarray.core.dataarray.DataArray
Can export to xarray¶
result.to_dataset()
data.to_dataset()
Summary¶
Pyresample is a speciallist program, with strong functionality with satpy. Would reccomend if swath/sat image data is part of your normal workflow. For others, the requirement of the data being CF compliant and API is a hurdle.