Skip to article frontmatterSkip to article content

easy.gems for HEALPix Analysis & Visualization

HEALPix logo

easy.gems for HEALPix Analysis & Visualization

In this section, you’ll learn:

  • Utilizing intake to open a HEALPix data catalog
  • Using the healpix package to perform HEALPix operations to look at basic statistics
  • Plotting HEALPix data via easy.gems functionality

Prerequisites

ConceptsImportanceNotes
HEALPix overviewNecessary

Time to learn: 30 minutes


Open data catalog

Let us use the online data catalog from the WCRP’s Digital Earths Global Hackathon 2025’s catalog repository using intake and read the output of the ICON simulation run ngc4008, which is stored in the HEALPix format:

import intake

# Hackathon data catalogs
cat_url = "https://digital-earths-global-hackathon.github.io/catalog/catalog.yaml"
cat = intake.open_catalog(cat_url).online
model_run = cat.icon_ngc4008

Matplotlib Logo

Explore datasets

So, the coarsest dataset in this model run would be as follows (Even if we called it without specifying any parameters, i.e. model_run.to_dask(), the result would be same as the ds_coarsest below since this model run defaults to the coarsest settings):

ds_coarsest = model_run(zoom=0, time="P1D").to_dask()
ds_coarsest
Loading...

Now, let us look at a dataset with finer zoom level still with the coarsest time and another dataset with a finer zoom level and the finest time (which may be useful for daily analyses) dataset:

ds_fine = model_run(zoom=7).to_dask()
ds_fine
Loading...
ds_finesttime = model_run(zoom=6, time="PT15M").to_dask()
ds_finesttime
Loading...

HEALPix basic stats with thehealpix package

Let us look at the global and Boulder, CO, USA temperature averages for a 3-year time-slice of the whole dataset.

For this, we will first need to define a few HEALPix helper functions to get the nest and nside values from the dataset, then find the HEALPix pixel that Boulder coords fall in, and finally plot those temporal averages using matplotlib.

import healpix as hp
import matplotlib.pylab as plt

HEALPix helper functions

def get_nest(ds):
    return ds.crs.healpix_order == "nest"
    
def get_nside(ds):
    return ds.crs.healpix_nside

HEALPix pixel containing Boulder’s coords

%%time
boulder_lon = -105.2747
boulder_lat = 40.0190

boulder_pixel = hp.ang2pix(
    get_nside(ds_fine), boulder_lon, boulder_lat, lonlat=True, nest=get_nest(ds_fine)
)
CPU times: user 233 μs, sys: 64 μs, total: 297 μs
Wall time: 302 μs

Global and Boulder’s temperature averages

%%time
time_slice = slice("2020-01-02T00:00:00.000000000", "2023-01-01T00:00:00.000000000")

ds_fine.tas.sel(time=time_slice).isel(cell=boulder_pixel).plot(label="Boulder")

ds_coarsest.tas.sel(time=time_slice).mean("cell").plot(label="Global mean")

plt.legend()
CPU times: user 310 ms, sys: 177 ms, total: 487 ms
Wall time: 1.92 s
<Figure size 640x480 with 1 Axes>

Plotting with easy.gems and cartopy

In this part, we will look at the healpix_show function that is provided by easy.gems for convenient HEALPix plotting.

import easygems.healpix as eghp

import cartopy.crs as ccrs
import cartopy.feature as cf
import cmocean

Global plots

Most of this is matplotlib and cartopy code, but have a look at how eghp.healpix_show() is called. The following code will plot global temperature (at the first timestep for simplicity)

projection = ccrs.Robinson(central_longitude=-135.5808361)

fig, ax = plt.subplots(
    figsize=(8, 4), subplot_kw={"projection": projection}, constrained_layout=True
)

ax.set_global()

eghp.healpix_show(ds_fine.tas.isel(time=0), ax=ax, cmap=cmocean.cm.thermal)

ax.add_feature(cf.COASTLINE, linewidth=0.8)
ax.add_feature(cf.BORDERS, linewidth=0.4)
<cartopy.mpl.feature_artist.FeatureArtist at 0x7fb99c163b10>
/home/runner/micromamba/envs/healpix-cookbook-dev/lib/python3.13/site-packages/cartopy/io/__init__.py:241: DownloadWarning: Downloading: https://naturalearth.s3.amazonaws.com/110m_physical/ne_110m_coastline.zip
  warnings.warn(f'Downloading: {url}', DownloadWarning)
/home/runner/micromamba/envs/healpix-cookbook-dev/lib/python3.13/site-packages/cartopy/io/__init__.py:241: DownloadWarning: Downloading: https://naturalearth.s3.amazonaws.com/110m_cultural/ne_110m_admin_0_boundary_lines_land.zip
  warnings.warn(f'Downloading: {url}', DownloadWarning)
<Figure size 800x400 with 1 Axes>

Regional plots

If plotting a region of interest is desired, it is also possible through setting extents of the matplotlib plot.

Let us look into USA map using the Boulder, CO, USA coords we had used before for simplicity:

projection = ccrs.Robinson(central_longitude=boulder_lon)

fig, ax = plt.subplots(
    figsize=(8, 4), subplot_kw={"projection": projection}, constrained_layout=True
)
ax.set_extent([boulder_lon-20, boulder_lon+40, boulder_lat-20, boulder_lat+10], crs=ccrs.PlateCarree())

eghp.healpix_show(ds_fine.tas.isel(time=0), ax=ax, cmap=cmocean.cm.thermal)

ax.add_feature(cf.COASTLINE, linewidth=0.8)
ax.add_feature(cf.BORDERS, linewidth=0.4)
<cartopy.mpl.feature_artist.FeatureArtist at 0x7fb985d30a50>
/home/runner/micromamba/envs/healpix-cookbook-dev/lib/python3.13/site-packages/cartopy/io/__init__.py:241: DownloadWarning: Downloading: https://naturalearth.s3.amazonaws.com/50m_physical/ne_50m_coastline.zip
  warnings.warn(f'Downloading: {url}', DownloadWarning)
/home/runner/micromamba/envs/healpix-cookbook-dev/lib/python3.13/site-packages/cartopy/io/__init__.py:241: DownloadWarning: Downloading: https://naturalearth.s3.amazonaws.com/50m_cultural/ne_50m_admin_0_boundary_lines_land.zip
  warnings.warn(f'Downloading: {url}', DownloadWarning)
<Figure size 800x400 with 1 Axes>

Further easy.gems and healpix

These are only a sampling of HEALPix and easy.gems capabilities; if you are interested in learning more, be sure to check out the usage examples at the easy.gems HEALPix Documentation.

What is next?

The next section will provide an UXarray workflow that loads in and analyzes & visualizes HEALPix data.