Store virtual datasets as Kerchunk Parquet references¶
Overview¶
In this notebook we will cover how to store virtual datasets as Kerchunk Parquet references instead of Kerchunk JSON references. For large virtual datasets, using Parquet should have performance implications as the overall reference file size should be smaller and the memory overhead of combining the reference files should be lower.
This notebook builds upon the Kerchunk Basics, Multi-File Datasets with Kerchunk and the Kerchunk and Dask notebooks.
Prerequisites¶
| Concepts | Importance | Notes | 
|---|---|---|
| Basics of virtual Zarr stores | Required | Core | 
| Multi-file virtual datasets with VirtualiZarr | Required | Core | 
| Parallel virtual dataset creation with VirtualiZarr, Kerchunk, and Dask | Required | Core | 
| Introduction to Xarray | Required | IO/Visualization | 
- Time to learn: 30 minutes 
Imports¶
import logging
import dask
import fsspec
import xarray as xr
from distributed import Client
from virtualizarr import open_virtual_datasetSetting up the Dask Client¶
client = Client(n_workers=8, silence_logs=logging.ERROR)
clientCreate Input File List¶
Here we are using fsspec's glob functionality along with the * wildcard operator and some string slicing to grab a list of NetCDF files from a s3 fsspec filesystem.
# Initiate fsspec filesystems for reading
fs_read = fsspec.filesystem("s3", anon=True, skip_instance_cache=True)
files_paths = fs_read.glob("s3://smn-ar-wrf/DATA/WRF/DET/2022/12/31/12/*")
# Here we prepend the prefix 's3://', which points to AWS.
files_paths = sorted(["s3://" + f for f in files_paths])Subset the Data¶
To speed up our example, lets take a subset of the year of data.
# If the subset_flag == True (default), the list of input files will
# be subset to speed up the processing
subset_flag = True
if subset_flag:
    files_paths = files_paths[0:4]Generate Lazy References¶
Here we create a function to generate a list of Dask delayed objects.
def generate_virtual_dataset(file, storage_options):
    return open_virtual_dataset(
        file, indexes={}, reader_options={"storage_options": storage_options}
    )
storage_options = dict(anon=True, default_fill_cache=False, default_cache_type="first")
# Generate Dask Delayed objects
tasks = [
    dask.delayed(generate_virtual_dataset)(file, storage_options)
    for file in files_paths
]Start the Dask Processing¶
To view the processing you can view it in real-time on the Dask Dashboard. ex: http://
virtual_datasets = list(dask.compute(*tasks))2025-10-31 00:42:41,664 - distributed.worker - ERROR - Compute Failed
Key:       generate_virtual_dataset-061f9e78-5cce-47b0-924d-de3cbc5b78f3
State:     executing
Task:  <Task 'generate_virtual_dataset-061f9e78-5cce-47b0-924d-de3cbc5b78f3' generate_virtual_dataset(...)>
Exception: 'TypeError("open_virtual_dataset() got an unexpected keyword argument \'indexes\'")'
Traceback: '  File "/tmp/ipykernel_4240/841847916.py", line 2, in generate_virtual_dataset\n'
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
Cell In[6], line 1
----> 1 virtual_datasets = list(dask.compute(*tasks))
File ~/micromamba/envs/kerchunk-cookbook/lib/python3.13/site-packages/dask/base.py:681, in compute(traverse, optimize_graph, scheduler, get, *args, **kwargs)
    678     expr = expr.optimize()
    679     keys = list(flatten(expr.__dask_keys__()))
--> 681     results = schedule(expr, keys, **kwargs)
    683 return repack(results)
Cell In[5], line 2, in generate_virtual_dataset()
      1 def generate_virtual_dataset(file, storage_options):
----> 2     return open_virtual_dataset(
      3         file, indexes={}, reader_options={"storage_options": storage_options}
      4     )
TypeError: open_virtual_dataset() got an unexpected keyword argument 'indexes'Combine virtual datasets using VirtualiZarr¶
combined_vds = xr.combine_nested(
    virtual_datasets, concat_dim=["time"], coords="minimal", compat="override"
)
combined_vdsWrite the virtual dataset to a Kerchunk Parquet reference¶
combined_vds.virtualize.to_kerchunk("combined.parq", format="parquet")Shutdown the Dask cluster¶
client.shutdown()Load kerchunked dataset¶
Next we initiate a fsspec ReferenceFileSystem.
We need to pass:
- The name of the parquet store 
- The remote protocol (This is the protocol of the input file urls) 
- The target protocol ( - filesince we saved our parquet store locally).
storage_options = {
    "remote_protocol": "s3",
    "skip_instance_cache": True,
    "remote_options": {"anon": True},
    "target_protocol": "file",
    "lazy": True,
}  # options passed to fsspec
open_dataset_options = {"chunks": {}}  # opens passed to xarray
ds = xr.open_dataset(
    "combined.parq",
    engine="kerchunk",
    storage_options=storage_options,
    open_dataset_options=open_dataset_options,
)
ds