Skip to article frontmatterSkip to article content

Clouds over SGP for April 4, 2019

Looking at LASSO data for April 4, 2019 to see meterological data and calculate cloud base and cloud top.


Imports

from datetime import datetime
import numpy as np
import xarray as xr
import fsspec
import xwrf

import matplotlib.pyplot as plt

Bring in the data

Here is the raw model output from LASSO.

# Set the URL and path for the cloud
URL = 'https://js2.jetstream-cloud.org:8001/'
path = f'pythia/lasso-sgp'

# Configure the s3-like storage endpoint on jetstream
fs = fsspec.filesystem("s3", anon=True, client_kwargs=dict(endpoint_url=URL))

# Set the analysis date and simulation number
case_date = datetime(2019, 4, 4)
sim_id = 7

# Read the wrfstat files
wrfstat_pattern = f's3://{path}/sim000{sim_id}/raw_model/wrfstat*'
wrfstat_files = sorted(fs.glob(wrfstat_pattern))

# Remotely read these into a list
wrfstat_file_list = [fs.open(file) for file in wrfstat_files]
wrfstat_file_list
[<File-like object S3FileSystem, pythia/lasso-sgp/sim0007/raw_model/wrfstat_d01_2019-04-04_12:00:00.nc>]

Load into an xarray.Dataset

ds_stat = xr.open_mfdataset(wrfstat_file_list, engine='h5netcdf')

# Rename time - in this case, we are not using xwrf to clean the dataset
ds_stat["Time"] = ds_stat["XTIME"]
ds_stat
---------------------------------------------------------------------------
ClientError                               Traceback (most recent call last)
File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/s3fs/core.py:114, in _error_wrapper(func, args, kwargs, retries)
    113 try:
--> 114     return await func(*args, **kwargs)
    115 except S3_RETRYABLE_ERRORS as e:

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/aiobotocore/context.py:36, in with_current_context.<locals>.decorator.<locals>.wrapper(*args, **kwargs)
     35     await resolve_awaitable(hook())
---> 36 return await func(*args, **kwargs)

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/aiobotocore/client.py:424, in AioBaseClient._make_api_call(self, operation_name, api_params)
    423     error_class = self.exceptions.from_code(error_code)
--> 424     raise error_class(parsed_response, operation_name)
    425 else:

ClientError: An error occurred (PreconditionFailed) when calling the GetObject operation: None

The above exception was the direct cause of the following exception:

OSError                                   Traceback (most recent call last)
File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/s3fs/core.py:2378, in S3File._fetch_range(self, start, end)
   2377 try:
-> 2378     return _fetch_range(
   2379         self.fs,
   2380         self.bucket,
   2381         self.key,
   2382         self.version_id,
   2383         start,
   2384         end,
   2385         req_kw=self.req_kw,
   2386     )
   2388 except OSError as ex:

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/s3fs/core.py:2547, in _fetch_range(fs, bucket, key, version_id, start, end, req_kw)
   2546 logger.debug("Fetch: %s/%s, %s-%s", bucket, key, start, end)
-> 2547 return sync(fs.loop, _inner_fetch, fs, bucket, key, version_id, start, end, req_kw)

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/fsspec/asyn.py:103, in sync(loop, func, timeout, *args, **kwargs)
    102 elif isinstance(return_result, BaseException):
--> 103     raise return_result
    104 else:

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/fsspec/asyn.py:56, in _runner(event, coro, result, timeout)
     55 try:
---> 56     result[0] = await coro
     57 except Exception as ex:

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/s3fs/core.py:2565, in _inner_fetch(fs, bucket, key, version_id, start, end, req_kw)
   2563         resp["Body"].close()
-> 2565 return await _error_wrapper(_call_and_read, retries=fs.retries)

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/s3fs/core.py:146, in _error_wrapper(func, args, kwargs, retries)
    145 err = translate_boto_error(err)
--> 146 raise err

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/s3fs/core.py:114, in _error_wrapper(func, args, kwargs, retries)
    113 try:
--> 114     return await func(*args, **kwargs)
    115 except S3_RETRYABLE_ERRORS as e:

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/s3fs/core.py:2552, in _inner_fetch.<locals>._call_and_read()
   2551 async def _call_and_read():
-> 2552     resp = await fs._call_s3(
   2553         "get_object",
   2554         Bucket=bucket,
   2555         Key=key,
   2556         Range="bytes=%i-%i" % (start, end - 1),
   2557         **version_id_kw(version_id),
   2558         **req_kw,
   2559     )
   2560     try:

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/s3fs/core.py:371, in S3FileSystem._call_s3(self, method, *akwarglist, **kwargs)
    370 additional_kwargs = self._get_s3_method_kwargs(method, *akwarglist, **kwargs)
--> 371 return await _error_wrapper(
    372     method, kwargs=additional_kwargs, retries=self.retries
    373 )

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/s3fs/core.py:146, in _error_wrapper(func, args, kwargs, retries)
    145 err = translate_boto_error(err)
--> 146 raise err

OSError: [Errno 22] None

During handling of the above exception, another exception occurred:

TypeError                                 Traceback (most recent call last)
Cell In[3], line 1
----> 1 ds_stat = xr.open_mfdataset(wrfstat_file_list, engine='h5netcdf')
      3 # Rename time - in this case, we are not using xwrf to clean the dataset
      4 ds_stat["Time"] = ds_stat["XTIME"]

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/xarray/backends/api.py:1788, in open_mfdataset(paths, chunks, concat_dim, compat, preprocess, engine, data_vars, coords, combine, parallel, join, attrs_file, combine_attrs, errors, **kwargs)
   1786 for p in paths1d:
   1787     try:
-> 1788         ds = open_(p, **open_kwargs)
   1789         datasets.append(ds)
   1790     except Exception as e:

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/xarray/backends/api.py:760, in open_dataset(filename_or_obj, engine, chunks, cache, decode_cf, mask_and_scale, decode_times, decode_timedelta, use_cftime, concat_characters, decode_coords, drop_variables, create_default_indexes, inline_array, chunked_array_type, from_array_kwargs, backend_kwargs, **kwargs)
    748 decoders = _resolve_decoders_kwargs(
    749     decode_cf,
    750     open_backend_dataset_parameters=backend.open_dataset_parameters,
   (...)    756     decode_coords=decode_coords,
    757 )
    759 overwrite_encoded_chunks = kwargs.pop("overwrite_encoded_chunks", None)
--> 760 backend_ds = backend.open_dataset(
    761     filename_or_obj,
    762     drop_variables=drop_variables,
    763     **decoders,
    764     **kwargs,
    765 )
    766 ds = _dataset_from_backend_dataset(
    767     backend_ds,
    768     filename_or_obj,
   (...)    779     **kwargs,
    780 )
    781 return ds

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/xarray/backends/h5netcdf_.py:499, in H5netcdfBackendEntrypoint.open_dataset(self, filename_or_obj, mask_and_scale, decode_times, concat_characters, decode_coords, drop_variables, use_cftime, decode_timedelta, format, group, lock, invalid_netcdf, phony_dims, decode_vlen_strings, driver, driver_kwds, storage_options)
    496 emit_phony_dims_warning, phony_dims = _check_phony_dims(phony_dims)
    498 filename_or_obj = _normalize_filename_or_obj(filename_or_obj)
--> 499 store = H5NetCDFStore.open(
    500     filename_or_obj,
    501     format=format,
    502     group=group,
    503     lock=lock,
    504     invalid_netcdf=invalid_netcdf,
    505     phony_dims=phony_dims,
    506     decode_vlen_strings=decode_vlen_strings,
    507     driver=driver,
    508     driver_kwds=driver_kwds,
    509     storage_options=storage_options,
    510 )
    512 store_entrypoint = StoreBackendEntrypoint()
    514 ds = store_entrypoint.open_dataset(
    515     store,
    516     mask_and_scale=mask_and_scale,
   (...)    522     decode_timedelta=decode_timedelta,
    523 )

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/xarray/backends/h5netcdf_.py:194, in H5NetCDFStore.open(cls, filename, mode, format, group, lock, autoclose, invalid_netcdf, phony_dims, decode_vlen_strings, driver, driver_kwds, storage_options)
    191     source.getvalue = filename.getbuffer
    193 if isinstance(filename, io.IOBase) and mode == "r":
--> 194     magic_number = read_magic_number_from_file(filename)
    195     if not magic_number.startswith(b"\211HDF\r\n\032\n"):
    196         raise ValueError(
    197             f"{magic_number!r} is not the signature of a valid netCDF4 file"
    198         )

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/xarray/core/utils.py:701, in read_magic_number_from_file(filename_or_obj, count)
    699 if filename_or_obj.tell() != 0:
    700     filename_or_obj.seek(0)
--> 701 magic_number = filename_or_obj.read(count)
    702 filename_or_obj.seek(0)
    703 return magic_number

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/fsspec/spec.py:2111, in AbstractBufferedFile.read(self, length)
   2108 if length == 0:
   2109     # don't even bother calling fetch
   2110     return b""
-> 2111 out = self.cache._fetch(self.loc, self.loc + length)
   2113 logger.debug(
   2114     "%s read: %i - %i %s",
   2115     self,
   (...)   2118     self.cache._log_stats(),
   2119 )
   2120 self.loc += len(out)

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/fsspec/caching.py:287, in ReadAheadCache._fetch(self, start, end)
    285 end = min(self.size, end + self.blocksize)
    286 self.total_requested_bytes += end - start
--> 287 self.cache = self.fetcher(start, end)  # new block replaces old
    288 self.start = start
    289 self.end = self.start + len(self.cache)

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/s3fs/core.py:2389, in S3File._fetch_range(self, start, end)
   2378     return _fetch_range(
   2379         self.fs,
   2380         self.bucket,
   (...)   2385         req_kw=self.req_kw,
   2386     )
   2388 except OSError as ex:
-> 2389     if ex.args[0] == errno.EINVAL and "pre-conditions" in ex.args[1]:
   2390         raise FileExpired(
   2391             filename=self.details["name"], e_tag=self.details.get("ETag")
   2392         ) from ex
   2393     else:

TypeError: argument of type 'NoneType' is not iterable

Find the indices of the boundary layer depth - in case we happen to care about that later

ds_stat["bottom_top"] = ds_stat.bottom_top
ds_stat
ki = ds_stat['CSP_THL'].idxmin(dim='bottom_top')
ki.load()

Let’s look at some meteorological info for this date

plot_ql = ds_stat['CSP_QL'].assign_coords(height = (ds_stat["CSP_Z"]))
plot_ql.isel(Time=slice(6,None)).plot(x = 'Time',y = 'height', ylim=[0,7000])
plot_lwc = ds_stat['CSP_LWC'].assign_coords(height = (ds_stat["CSP_Z"]))
plot_lwc.isel(Time=slice(6,None)).plot(x = 'Time',y = 'height', ylim=[0,7000])
plot_thl = ds_stat['CSP_TH'].assign_coords(height = (ds_stat["CSP_Z"]))
plot_thl.isel(Time=slice(6,None)).plot(x = 'Time',y = 'height', ylim=[0,7000],vmin=298,vmax=320)

Fix some height things so that we can plot...

The z values are time dependent, so we need to deal with the height values by assuming that the first time step is close enough

We also need to make bottom_top a coordinate so that we aren’t yelled at by errors

ds_stat["bottom_top"] = ds_stat.bottom_top
ds_stat['bottom_top'] = ds_stat['CSP_Z'].isel(Time = 1).values
ds_stat['bottom_top'].values # make sure that these are heights and not indicies

Calculate cloud base and top from the liquid water conent and the liquid water mixing ratio

ds_stat['cb_lwc'] = (ds_stat['CSP_LWC']>0).idxmax(dim = 'bottom_top')
ds_stat['cb_lwc'] = ds_stat['cb_lwc'].where(ds_stat['cb_lwc']>ds_stat['bottom_top'][0])
print(ds_stat['cb_lwc'])

ds_stat['ct_lwc'] = ((ds_stat['CSP_LWC'].isel(bottom_top = slice(None, None, -1)))>0).idxmax(dim='bottom_top')
ds_stat['ct_lwc'] = ds_stat['ct_lwc'].where(ds_stat['ct_lwc']<ds_stat['bottom_top'][-1])
print(ds_stat['ct_lwc'])
ds_stat['cb_lwc'].plot(label='base',ylim = (0,7000),xlim = (ds_stat['CSP_Z'].Time[6],ds_stat['CSP_Z'].Time[-1]))
ds_stat['ct_lwc'].plot(label='top',ylim = (0,7000),xlim = (ds_stat['CSP_Z'].Time[6],ds_stat['CSP_Z'].Time[-1]))
plt.legend()
plt.ylabel('Height (m)')
plt.xlabel('Time (UTC)')
plt.show()
ds_stat['cb_ql'] = (ds_stat['CSP_LWC']>0).idxmax(dim = 'bottom_top')
ds_stat['cb_ql'] = ds_stat['cb_ql'].where(ds_stat['cb_ql']>ds_stat['bottom_top'][0])
print(ds_stat['cb_ql'].load())

ds_stat['ct_ql'] = ((ds_stat['CSP_LWC'].isel(bottom_top = slice(None, None, -1)))>0).idxmax(dim='bottom_top')
ds_stat['ct_ql'] = ds_stat['ct_ql'].where(ds_stat['ct_ql']<ds_stat['bottom_top'][-1])
print(ds_stat['ct_ql'].load())
ds_stat['cb_ql'].plot(label='base',ylim = (0,7000),xlim = (ds_stat['CSP_Z'].Time[6],ds_stat['CSP_Z'].Time[-1]))
ds_stat['ct_ql'].plot(label='top',ylim = (0,7000),xlim = (ds_stat['CSP_Z'].Time[6],ds_stat['CSP_Z'].Time[-1]))
plt.legend()
plt.ylabel('Height (m)')
plt.xlabel('Time (UTC)')
plt.show()

Conclusions

We notice how similar the cloud base/top are at their beginning and end times! This framework enables a streamlined method of analyzing clouds within the simulation data, including derived quantities such as cloud base/height.