Skip to article frontmatterSkip to article content

Clouds over SGP for April 4, 2019

Looking at LASSO data for April 4, 2019 to see meterological data and calculate cloud base and cloud top.


Imports

from datetime import datetime
import numpy as np
import xarray as xr
import fsspec
import xwrf

import matplotlib.pyplot as plt
/home/runner/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/xwrf/__init__.py:5: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81.
  from pkg_resources import DistributionNotFound, get_distribution

Bring in the data

Here is the raw model output from LASSO.

# Set the URL and path for the cloud
URL = 'https://js2.jetstream-cloud.org:8001/'
path = f'pythia/lasso-sgp'

# Configure the s3-like storage endpoint on jetstream
fs = fsspec.filesystem("s3", anon=True, client_kwargs=dict(endpoint_url=URL))

# Set the analysis date and simulation number
case_date = datetime(2019, 4, 4)
sim_id = 7

# Read the wrfstat files
wrfstat_pattern = f's3://{path}/sim000{sim_id}/raw_model/wrfstat*'
wrfstat_files = sorted(fs.glob(wrfstat_pattern))

# Remotely read these into a list
wrfstat_file_list = [fs.open(file) for file in wrfstat_files]
wrfstat_file_list
[<File-like object S3FileSystem, pythia/lasso-sgp/sim0007/raw_model/wrfstat_d01_2019-04-04_12:00:00.nc>]

Load into an xarray.Dataset

ds_stat = xr.open_mfdataset(wrfstat_file_list, engine='h5netcdf')

# Rename time - in this case, we are not using xwrf to clean the dataset
ds_stat["Time"] = ds_stat["XTIME"]
ds_stat
---------------------------------------------------------------------------
ClientError                               Traceback (most recent call last)
File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/s3fs/core.py:114, in _error_wrapper(func, args, kwargs, retries)
    113 try:
--> 114     return await func(*args, **kwargs)
    115 except S3_RETRYABLE_ERRORS as e:

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/aiobotocore/context.py:36, in with_current_context.<locals>.decorator.<locals>.wrapper(*args, **kwargs)
     35     await resolve_awaitable(hook())
---> 36 return await func(*args, **kwargs)

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/aiobotocore/client.py:415, in AioBaseClient._make_api_call(self, operation_name, api_params)
    414     error_class = self.exceptions.from_code(error_code)
--> 415     raise error_class(parsed_response, operation_name)
    416 else:

ClientError: An error occurred (PreconditionFailed) when calling the GetObject operation: None

The above exception was the direct cause of the following exception:

OSError                                   Traceback (most recent call last)
File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/s3fs/core.py:2378, in S3File._fetch_range(self, start, end)
   2377 try:
-> 2378     return _fetch_range(
   2379         self.fs,
   2380         self.bucket,
   2381         self.key,
   2382         self.version_id,
   2383         start,
   2384         end,
   2385         req_kw=self.req_kw,
   2386     )
   2388 except OSError as ex:

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/s3fs/core.py:2550, in _fetch_range(fs, bucket, key, version_id, start, end, req_kw)
   2549 logger.debug("Fetch: %s/%s, %s-%s", bucket, key, start, end)
-> 2550 return sync(fs.loop, _inner_fetch, fs, bucket, key, version_id, start, end, req_kw)

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/fsspec/asyn.py:103, in sync(loop, func, timeout, *args, **kwargs)
    102 elif isinstance(return_result, BaseException):
--> 103     raise return_result
    104 else:

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/fsspec/asyn.py:56, in _runner(event, coro, result, timeout)
     55 try:
---> 56     result[0] = await coro
     57 except Exception as ex:

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/s3fs/core.py:2568, in _inner_fetch(fs, bucket, key, version_id, start, end, req_kw)
   2566         resp["Body"].close()
-> 2568 return await _error_wrapper(_call_and_read, retries=fs.retries)

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/s3fs/core.py:146, in _error_wrapper(func, args, kwargs, retries)
    145 err = translate_boto_error(err)
--> 146 raise err

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/s3fs/core.py:114, in _error_wrapper(func, args, kwargs, retries)
    113 try:
--> 114     return await func(*args, **kwargs)
    115 except S3_RETRYABLE_ERRORS as e:

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/s3fs/core.py:2555, in _inner_fetch.<locals>._call_and_read()
   2554 async def _call_and_read():
-> 2555     resp = await fs._call_s3(
   2556         "get_object",
   2557         Bucket=bucket,
   2558         Key=key,
   2559         Range="bytes=%i-%i" % (start, end - 1),
   2560         **version_id_kw(version_id),
   2561         **req_kw,
   2562     )
   2563     try:

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/s3fs/core.py:371, in S3FileSystem._call_s3(self, method, *akwarglist, **kwargs)
    370 additional_kwargs = self._get_s3_method_kwargs(method, *akwarglist, **kwargs)
--> 371 return await _error_wrapper(
    372     method, kwargs=additional_kwargs, retries=self.retries
    373 )

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/s3fs/core.py:146, in _error_wrapper(func, args, kwargs, retries)
    145 err = translate_boto_error(err)
--> 146 raise err

OSError: [Errno 22] None

During handling of the above exception, another exception occurred:

TypeError                                 Traceback (most recent call last)
Cell In[3], line 1
----> 1 ds_stat = xr.open_mfdataset(wrfstat_file_list, engine='h5netcdf')
      3 # Rename time - in this case, we are not using xwrf to clean the dataset
      4 ds_stat["Time"] = ds_stat["XTIME"]

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/xarray/backends/api.py:1635, in open_mfdataset(paths, chunks, concat_dim, compat, preprocess, engine, data_vars, coords, combine, parallel, join, attrs_file, combine_attrs, **kwargs)
   1632     open_ = open_dataset
   1633     getattr_ = getattr
-> 1635 datasets = [open_(p, **open_kwargs) for p in paths1d]
   1636 closers = [getattr_(ds, "_close") for ds in datasets]
   1637 if preprocess is not None:

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/xarray/backends/api.py:687, in open_dataset(filename_or_obj, engine, chunks, cache, decode_cf, mask_and_scale, decode_times, decode_timedelta, use_cftime, concat_characters, decode_coords, drop_variables, inline_array, chunked_array_type, from_array_kwargs, backend_kwargs, **kwargs)
    675 decoders = _resolve_decoders_kwargs(
    676     decode_cf,
    677     open_backend_dataset_parameters=backend.open_dataset_parameters,
   (...)    683     decode_coords=decode_coords,
    684 )
    686 overwrite_encoded_chunks = kwargs.pop("overwrite_encoded_chunks", None)
--> 687 backend_ds = backend.open_dataset(
    688     filename_or_obj,
    689     drop_variables=drop_variables,
    690     **decoders,
    691     **kwargs,
    692 )
    693 ds = _dataset_from_backend_dataset(
    694     backend_ds,
    695     filename_or_obj,
   (...)    705     **kwargs,
    706 )
    707 return ds

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/xarray/backends/h5netcdf_.py:458, in H5netcdfBackendEntrypoint.open_dataset(self, filename_or_obj, mask_and_scale, decode_times, concat_characters, decode_coords, drop_variables, use_cftime, decode_timedelta, format, group, lock, invalid_netcdf, phony_dims, decode_vlen_strings, driver, driver_kwds, storage_options)
    455 emit_phony_dims_warning, phony_dims = _check_phony_dims(phony_dims)
    457 filename_or_obj = _normalize_path(filename_or_obj)
--> 458 store = H5NetCDFStore.open(
    459     filename_or_obj,
    460     format=format,
    461     group=group,
    462     lock=lock,
    463     invalid_netcdf=invalid_netcdf,
    464     phony_dims=phony_dims,
    465     decode_vlen_strings=decode_vlen_strings,
    466     driver=driver,
    467     driver_kwds=driver_kwds,
    468     storage_options=storage_options,
    469 )
    471 store_entrypoint = StoreBackendEntrypoint()
    473 ds = store_entrypoint.open_dataset(
    474     store,
    475     mask_and_scale=mask_and_scale,
   (...)    481     decode_timedelta=decode_timedelta,
    482 )

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/xarray/backends/h5netcdf_.py:167, in H5NetCDFStore.open(cls, filename, mode, format, group, lock, autoclose, invalid_netcdf, phony_dims, decode_vlen_strings, driver, driver_kwds, storage_options)
    162     raise ValueError(
    163         "can't open netCDF4/HDF5 as bytes "
    164         "try passing a path or file-like object"
    165     )
    166 elif isinstance(filename, io.IOBase):
--> 167     magic_number = read_magic_number_from_file(filename)
    168     if not magic_number.startswith(b"\211HDF\r\n\032\n"):
    169         raise ValueError(
    170             f"{magic_number!r} is not the signature of a valid netCDF4 file"
    171         )

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/xarray/core/utils.py:688, in read_magic_number_from_file(filename_or_obj, count)
    686     if filename_or_obj.tell() != 0:
    687         filename_or_obj.seek(0)
--> 688     magic_number = filename_or_obj.read(count)
    689     filename_or_obj.seek(0)
    690 else:

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/fsspec/spec.py:2111, in AbstractBufferedFile.read(self, length)
   2108 if length == 0:
   2109     # don't even bother calling fetch
   2110     return b""
-> 2111 out = self.cache._fetch(self.loc, self.loc + length)
   2113 logger.debug(
   2114     "%s read: %i - %i %s",
   2115     self,
   (...)   2118     self.cache._log_stats(),
   2119 )
   2120 self.loc += len(out)

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/fsspec/caching.py:288, in ReadAheadCache._fetch(self, start, end)
    286 end = min(self.size, end + self.blocksize)
    287 self.total_requested_bytes += end - start
--> 288 self.cache = self.fetcher(start, end)  # new block replaces old
    289 self.start = start
    290 self.end = self.start + len(self.cache)

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/s3fs/core.py:2389, in S3File._fetch_range(self, start, end)
   2378     return _fetch_range(
   2379         self.fs,
   2380         self.bucket,
   (...)   2385         req_kw=self.req_kw,
   2386     )
   2388 except OSError as ex:
-> 2389     if ex.args[0] == errno.EINVAL and "pre-conditions" in ex.args[1]:
   2390         raise FileExpired(
   2391             filename=self.details["name"], e_tag=self.details.get("ETag")
   2392         ) from ex
   2393     else:

TypeError: argument of type 'NoneType' is not iterable

Find the indices of the boundary layer depth - in case we happen to care about that later

ds_stat["bottom_top"] = ds_stat.bottom_top
ds_stat
ki = ds_stat['CSP_THL'].idxmin(dim='bottom_top')
ki.load()

Let’s look at some meteorological info for this date

plot_ql = ds_stat['CSP_QL'].assign_coords(height = (ds_stat["CSP_Z"]))
plot_ql.isel(Time=slice(6,None)).plot(x = 'Time',y = 'height', ylim=[0,7000])
plot_lwc = ds_stat['CSP_LWC'].assign_coords(height = (ds_stat["CSP_Z"]))
plot_lwc.isel(Time=slice(6,None)).plot(x = 'Time',y = 'height', ylim=[0,7000])
plot_thl = ds_stat['CSP_TH'].assign_coords(height = (ds_stat["CSP_Z"]))
plot_thl.isel(Time=slice(6,None)).plot(x = 'Time',y = 'height', ylim=[0,7000],vmin=298,vmax=320)

Fix some height things so that we can plot...

The z values are time dependent, so we need to deal with the height values by assuming that the first time step is close enough

We also need to make bottom_top a coordinate so that we aren’t yelled at by errors

ds_stat["bottom_top"] = ds_stat.bottom_top
ds_stat['bottom_top'] = ds_stat['CSP_Z'].isel(Time = 1).values
ds_stat['bottom_top'].values # make sure that these are heights and not indicies

Calculate cloud base and top from the liquid water conent and the liquid water mixing ratio

ds_stat['cb_lwc'] = (ds_stat['CSP_LWC']>0).idxmax(dim = 'bottom_top')
ds_stat['cb_lwc'] = ds_stat['cb_lwc'].where(ds_stat['cb_lwc']>ds_stat['bottom_top'][0])
print(ds_stat['cb_lwc'])

ds_stat['ct_lwc'] = ((ds_stat['CSP_LWC'].isel(bottom_top = slice(None, None, -1)))>0).idxmax(dim='bottom_top')
ds_stat['ct_lwc'] = ds_stat['ct_lwc'].where(ds_stat['ct_lwc']<ds_stat['bottom_top'][-1])
print(ds_stat['ct_lwc'])
ds_stat['cb_lwc'].plot(label='base',ylim = (0,7000),xlim = (ds_stat['CSP_Z'].Time[6],ds_stat['CSP_Z'].Time[-1]))
ds_stat['ct_lwc'].plot(label='top',ylim = (0,7000),xlim = (ds_stat['CSP_Z'].Time[6],ds_stat['CSP_Z'].Time[-1]))
plt.legend()
plt.ylabel('Height (m)')
plt.xlabel('Time (UTC)')
plt.show()
ds_stat['cb_ql'] = (ds_stat['CSP_LWC']>0).idxmax(dim = 'bottom_top')
ds_stat['cb_ql'] = ds_stat['cb_ql'].where(ds_stat['cb_ql']>ds_stat['bottom_top'][0])
print(ds_stat['cb_ql'].load())

ds_stat['ct_ql'] = ((ds_stat['CSP_LWC'].isel(bottom_top = slice(None, None, -1)))>0).idxmax(dim='bottom_top')
ds_stat['ct_ql'] = ds_stat['ct_ql'].where(ds_stat['ct_ql']<ds_stat['bottom_top'][-1])
print(ds_stat['ct_ql'].load())
ds_stat['cb_ql'].plot(label='base',ylim = (0,7000),xlim = (ds_stat['CSP_Z'].Time[6],ds_stat['CSP_Z'].Time[-1]))
ds_stat['ct_ql'].plot(label='top',ylim = (0,7000),xlim = (ds_stat['CSP_Z'].Time[6],ds_stat['CSP_Z'].Time[-1]))
plt.legend()
plt.ylabel('Height (m)')
plt.xlabel('Time (UTC)')
plt.show()

Conclusions

We notice how similar the cloud base/top are at their beginning and end times! This framework enables a streamlined method of analyzing clouds within the simulation data, including derived quantities such as cloud base/height.