Skip to article frontmatterSkip to article content

Simulation vs Observational Data of Shallow Cumulus Clouds over the Southern Great Plains on April 4th, 2019

Import

# Lasso Simulation Data

# import dask
from datetime import datetime
from distributed import Client
import numpy as np
import xarray as xr
import xwrf
import s3fs
import fsspec
import xarray as xr
import glob

import matplotlib.pyplot as plt
/home/runner/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/xwrf/__init__.py:5: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81.
  from pkg_resources import DistributionNotFound, get_distribution

Spin up a Dask Cluster

We will use Dask here to access the data in a parallel/distributed manner.

client = Client()
client
Loading...

Access LASSO SGP Data from the NSF Jetstream Cloud

A subset of the LASSO Shallow Cumulus Experiment over the Southern Great Plains site has been made available on a cloud bucket, hosted through Project Pythia. These datasets were originally accessed through the LASSO bundle browser, untarred, then uploaded to the cloud bucket. We focus exclusively on the April 4, 2019 case.

Data were obtained from the Atmospheric Radiation Measurement (ARM) Program sponsored by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division.

Set the URL to access the data

The data are stored on a bucket, which is a web-accessible place where we can remotely stream the data, without downloading directly. The bucket is located on the NSF jetstream cloud, which we can see below. We then use fsspec to easily list the directrories and load in the data.

Below we set the url, then list (glob) the directories in the bucket.

# Set the URL and path for the cloud
URL = 'https://js2.jetstream-cloud.org:8001/'
path = f'pythia/lasso-sgp'


fs = fsspec.filesystem("s3", anon=True, client_kwargs=dict(endpoint_url=URL))

fs.glob(f"{path}/*")
['pythia/lasso-sgp/high_res_obs', 'pythia/lasso-sgp/metrics', 'pythia/lasso-sgp/sim0001', 'pythia/lasso-sgp/sim0002', 'pythia/lasso-sgp/sim0003', 'pythia/lasso-sgp/sim0004', 'pythia/lasso-sgp/sim0005', 'pythia/lasso-sgp/sim0006', 'pythia/lasso-sgp/sim0007', 'pythia/lasso-sgp/sim0008']

We notice that there are 8 simulations, as well as observations in the bucket. We are going to start with the fourth simulation, setting a path to the actual output, which is under /raw_model/

case_date = datetime(2019, 4, 4)
sim_id = 4

# Read the wrfstat files
wrfstat_pattern = f's3://{path}/sim000{sim_id}/raw_model/wrfstat*'

# Read the wrfout files
wrfout_pattern = f's3://{path}/sim000{sim_id}/raw_model/wrfout*'

wrfstat_files = sorted(fs.glob(wrfstat_pattern))
wrfout_files = sorted(fs.glob(wrfout_pattern))

Now that we have lists of files, we setup a path to read into xarray since we need the bucket information as well.

wrfstat_file_list = [fs.open(file) for file in wrfstat_files]
wrfout_file_list = [fs.open(file) for file in wrfout_files]

Load Data Using Xarray and View Variables

We have a single WRF stat file, which we can load into xarray, then postprocess with xwrf.

ds_stat = xr.open_mfdataset(wrfstat_file_list, engine='h5netcdf').xwrf.postprocess()
ds_stat
---------------------------------------------------------------------------
ClientError                               Traceback (most recent call last)
File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/s3fs/core.py:114, in _error_wrapper(func, args, kwargs, retries)
    113 try:
--> 114     return await func(*args, **kwargs)
    115 except S3_RETRYABLE_ERRORS as e:

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/aiobotocore/context.py:36, in with_current_context.<locals>.decorator.<locals>.wrapper(*args, **kwargs)
     35     await resolve_awaitable(hook())
---> 36 return await func(*args, **kwargs)

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/aiobotocore/client.py:415, in AioBaseClient._make_api_call(self, operation_name, api_params)
    414     error_class = self.exceptions.from_code(error_code)
--> 415     raise error_class(parsed_response, operation_name)
    416 else:

ClientError: An error occurred (PreconditionFailed) when calling the GetObject operation: None

The above exception was the direct cause of the following exception:

OSError                                   Traceback (most recent call last)
File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/s3fs/core.py:2378, in S3File._fetch_range(self, start, end)
   2377 try:
-> 2378     return _fetch_range(
   2379         self.fs,
   2380         self.bucket,
   2381         self.key,
   2382         self.version_id,
   2383         start,
   2384         end,
   2385         req_kw=self.req_kw,
   2386     )
   2388 except OSError as ex:

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/s3fs/core.py:2550, in _fetch_range(fs, bucket, key, version_id, start, end, req_kw)
   2549 logger.debug("Fetch: %s/%s, %s-%s", bucket, key, start, end)
-> 2550 return sync(fs.loop, _inner_fetch, fs, bucket, key, version_id, start, end, req_kw)

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/fsspec/asyn.py:103, in sync(loop, func, timeout, *args, **kwargs)
    102 elif isinstance(return_result, BaseException):
--> 103     raise return_result
    104 else:

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/fsspec/asyn.py:56, in _runner(event, coro, result, timeout)
     55 try:
---> 56     result[0] = await coro
     57 except Exception as ex:

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/s3fs/core.py:2568, in _inner_fetch(fs, bucket, key, version_id, start, end, req_kw)
   2566         resp["Body"].close()
-> 2568 return await _error_wrapper(_call_and_read, retries=fs.retries)

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/s3fs/core.py:146, in _error_wrapper(func, args, kwargs, retries)
    145 err = translate_boto_error(err)
--> 146 raise err

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/s3fs/core.py:114, in _error_wrapper(func, args, kwargs, retries)
    113 try:
--> 114     return await func(*args, **kwargs)
    115 except S3_RETRYABLE_ERRORS as e:

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/s3fs/core.py:2555, in _inner_fetch.<locals>._call_and_read()
   2554 async def _call_and_read():
-> 2555     resp = await fs._call_s3(
   2556         "get_object",
   2557         Bucket=bucket,
   2558         Key=key,
   2559         Range="bytes=%i-%i" % (start, end - 1),
   2560         **version_id_kw(version_id),
   2561         **req_kw,
   2562     )
   2563     try:

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/s3fs/core.py:371, in S3FileSystem._call_s3(self, method, *akwarglist, **kwargs)
    370 additional_kwargs = self._get_s3_method_kwargs(method, *akwarglist, **kwargs)
--> 371 return await _error_wrapper(
    372     method, kwargs=additional_kwargs, retries=self.retries
    373 )

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/s3fs/core.py:146, in _error_wrapper(func, args, kwargs, retries)
    145 err = translate_boto_error(err)
--> 146 raise err

OSError: [Errno 22] None

During handling of the above exception, another exception occurred:

TypeError                                 Traceback (most recent call last)
Cell In[6], line 1
----> 1 ds_stat = xr.open_mfdataset(wrfstat_file_list, engine='h5netcdf').xwrf.postprocess()
      2 ds_stat

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/xarray/backends/api.py:1635, in open_mfdataset(paths, chunks, concat_dim, compat, preprocess, engine, data_vars, coords, combine, parallel, join, attrs_file, combine_attrs, **kwargs)
   1632     open_ = open_dataset
   1633     getattr_ = getattr
-> 1635 datasets = [open_(p, **open_kwargs) for p in paths1d]
   1636 closers = [getattr_(ds, "_close") for ds in datasets]
   1637 if preprocess is not None:

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/xarray/backends/api.py:687, in open_dataset(filename_or_obj, engine, chunks, cache, decode_cf, mask_and_scale, decode_times, decode_timedelta, use_cftime, concat_characters, decode_coords, drop_variables, inline_array, chunked_array_type, from_array_kwargs, backend_kwargs, **kwargs)
    675 decoders = _resolve_decoders_kwargs(
    676     decode_cf,
    677     open_backend_dataset_parameters=backend.open_dataset_parameters,
   (...)    683     decode_coords=decode_coords,
    684 )
    686 overwrite_encoded_chunks = kwargs.pop("overwrite_encoded_chunks", None)
--> 687 backend_ds = backend.open_dataset(
    688     filename_or_obj,
    689     drop_variables=drop_variables,
    690     **decoders,
    691     **kwargs,
    692 )
    693 ds = _dataset_from_backend_dataset(
    694     backend_ds,
    695     filename_or_obj,
   (...)    705     **kwargs,
    706 )
    707 return ds

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/xarray/backends/h5netcdf_.py:458, in H5netcdfBackendEntrypoint.open_dataset(self, filename_or_obj, mask_and_scale, decode_times, concat_characters, decode_coords, drop_variables, use_cftime, decode_timedelta, format, group, lock, invalid_netcdf, phony_dims, decode_vlen_strings, driver, driver_kwds, storage_options)
    455 emit_phony_dims_warning, phony_dims = _check_phony_dims(phony_dims)
    457 filename_or_obj = _normalize_path(filename_or_obj)
--> 458 store = H5NetCDFStore.open(
    459     filename_or_obj,
    460     format=format,
    461     group=group,
    462     lock=lock,
    463     invalid_netcdf=invalid_netcdf,
    464     phony_dims=phony_dims,
    465     decode_vlen_strings=decode_vlen_strings,
    466     driver=driver,
    467     driver_kwds=driver_kwds,
    468     storage_options=storage_options,
    469 )
    471 store_entrypoint = StoreBackendEntrypoint()
    473 ds = store_entrypoint.open_dataset(
    474     store,
    475     mask_and_scale=mask_and_scale,
   (...)    481     decode_timedelta=decode_timedelta,
    482 )

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/xarray/backends/h5netcdf_.py:167, in H5NetCDFStore.open(cls, filename, mode, format, group, lock, autoclose, invalid_netcdf, phony_dims, decode_vlen_strings, driver, driver_kwds, storage_options)
    162     raise ValueError(
    163         "can't open netCDF4/HDF5 as bytes "
    164         "try passing a path or file-like object"
    165     )
    166 elif isinstance(filename, io.IOBase):
--> 167     magic_number = read_magic_number_from_file(filename)
    168     if not magic_number.startswith(b"\211HDF\r\n\032\n"):
    169         raise ValueError(
    170             f"{magic_number!r} is not the signature of a valid netCDF4 file"
    171         )

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/xarray/core/utils.py:688, in read_magic_number_from_file(filename_or_obj, count)
    686     if filename_or_obj.tell() != 0:
    687         filename_or_obj.seek(0)
--> 688     magic_number = filename_or_obj.read(count)
    689     filename_or_obj.seek(0)
    690 else:

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/fsspec/spec.py:2111, in AbstractBufferedFile.read(self, length)
   2108 if length == 0:
   2109     # don't even bother calling fetch
   2110     return b""
-> 2111 out = self.cache._fetch(self.loc, self.loc + length)
   2113 logger.debug(
   2114     "%s read: %i - %i %s",
   2115     self,
   (...)   2118     self.cache._log_stats(),
   2119 )
   2120 self.loc += len(out)

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/fsspec/caching.py:288, in ReadAheadCache._fetch(self, start, end)
    286 end = min(self.size, end + self.blocksize)
    287 self.total_requested_bytes += end - start
--> 288 self.cache = self.fetcher(start, end)  # new block replaces old
    289 self.start = start
    290 self.end = self.start + len(self.cache)

File ~/micromamba/envs/lasso-those-clouds-cookbook-dev/lib/python3.13/site-packages/s3fs/core.py:2389, in S3File._fetch_range(self, start, end)
   2378     return _fetch_range(
   2379         self.fs,
   2380         self.bucket,
   (...)   2385         req_kw=self.req_kw,
   2386     )
   2388 except OSError as ex:
-> 2389     if ex.args[0] == errno.EINVAL and "pre-conditions" in ex.args[1]:
   2390         raise FileExpired(
   2391             filename=self.details["name"], e_tag=self.details.get("ETag")
   2392         ) from ex
   2393     else:

TypeError: argument of type 'NoneType' is not iterable
# Plotting wrfstat variables...

# path_shcu_root = "/gpfs/wolf2/arm/atm124/world-shared/arm-summer-school-2024/lasso_tutorial/ShCu/untar/"  # on cumulus
path_shcu_root = "/data/project/ARM_Summer_School_2024_Data/lasso_tutorial/ShCu/untar"  # on Jupyter

case_date = datetime(2019, 4, 4)
sim_id = 4

ds_stat = xr.open_dataset(f"{path_shcu_root}/{case_date:%Y%m%d}/sim{sim_id:04d}/raw_model/wrfstat_d01_{case_date:%Y-%m-%d_12:00:00}.nc")
ds_stat

Plot Variables and Modify as Desired

xwrf automatically corrected the time for us! So now we can focus on subsetting given an hour. In this case, we are interested in 1700 UTC.

ds_stat.CSV_LWC
hour_to_plot = 17

# Time series:
ds_stat["CST_LWP"].plot()
plt.show()

# Profile at a selected time (plots sideways, though, since we are being lazy):
ds_stat["CSP_LWC"].sel(Time=f"{case_date:%Y-%m-%d} {hour_to_plot}:00").plot()
plt.show()

# X-Y slice for a selected time:
ds_stat["CSS_LWP"].sel(Time=f"{case_date:%Y-%m-%d} {hour_to_plot}:00").plot()
plt.show()

# A vertical slice from the volume at a selected time:
# We'll assign the vertical coordinate values for this one and hide the cloud-free upper atmosphere.
plot_data = ds_stat["CSV_LWC"].assign_coords(height=(ds_stat["CSP_Z"]))
plot_data.sel(Time=f"{case_date:%Y-%m-%d} {hour_to_plot}:00", y=-12450).plot(y="height", ylim=[0, 1500])
plt.show()

# Add lines and modify variables to plot desired figures... In this notebook, we plotted 

Plot wind speed

Let’s start with the first 10 files from the WRF simulation.

# Note the extra details required by open_mfdataset to connect the files together in time.
ds_wrf = xr.open_mfdataset(wrfout_file_list[:10],
                           combine="nested",
                           concat_dim="Time")

Since we did not use xwrf, this time, let’s fix the times.

ds_wrf["Time"] = ds_wrf["XTIME"]

Visualize the Wind Vectors and Expose Destaggering

Next, we plot wind vectors at a selected level to demonstrate how to destagger the wind components to cell-center values with xarray. The destaggering is something that we can automatically handle with xwrf, but we explain the process below to be more transparent, especially with winds that are not in the cell-centers.

Destagger and Rename Dimensions

We need to:

  1. destagger to cell centers
  2. rename the staggered dimension back to the non-staggered name to avoid dimension conflicts
  3. (re)name the unstaggered wind for convenience
  4. Then, we are able to put these new DataArrays back into the ds_wrf Dataset.
# Plot wind vectors at a selected level to demonstrate how to destagger the wind components to cell-center values with xarray...

plot_level = 12  # index of level to plot
skip_xy = 10  # Sampling interval for the vector thinning

nt, nz, ny, nx = ds_wrf["T"].shape

ds_wrf["UA"] = 0.5*( ds_wrf["U"].isel(west_east_stag=slice(0, nx)) + 
                    ds_wrf["U"].shift(west_east_stag=-1).isel(west_east_stag=slice(0, nx)) ).\
                    rename("UA").rename(west_east_stag="west_east")
ds_wrf["VA"] = 0.5*( ds_wrf["V"].isel(south_north_stag=slice(0, ny)) + 
                    ds_wrf["V"].shift(south_north_stag=-1).isel(south_north_stag=slice(0, ny)) ).\
                    rename("VA").rename(south_north_stag="south_north")
ds_wrf["SPD"] = np.sqrt(ds_wrf["UA"]**2 + ds_wrf["VA"]**2).rename("wind speed").\
                    assign_attrs(units="m s-1", description="wind speed")

Visualize the Speed and Wind Vectors

Now, we can proceed to more plotting-specific data manipulation. We need to add spatial variables for the idealized domain (since XLAT and XLONG are constant in the file). This is needed by the xarray quiver routine.

Then, thin the grid to reduce the number of arrrows.

ds_wrf["west_east"] = xr.DataArray(data=np.arange(nx)*ds_wrf.attrs["DX"], dims="west_east", name="west_east", attrs={"units": "m"})
ds_wrf["south_north"] = xr.DataArray(data=np.arange(ny)*ds_wrf.attrs["DX"], dims="south_north", name="south_north", attrs={"units": "m"})

ds_wrf_thinned = ds_wrf.\
    isel(west_east=slice(0, nx, skip_xy), south_north=slice(0, ny, skip_xy), bottom_top=plot_level).\
    sel(Time=f"{case_date:%Y-%m-%d} {hour_to_plot}:00")

fig, ax = plt.subplots(ncols=1)
ds_wrf_thinned["SPD"].plot(ax=ax, x="west_east", y="south_north")
ds_wrf_thinned.plot.quiver(ax=ax, x="west_east", y="south_north", u="UA", v="VA",
                           scale=100)
plt.show()

Compare with Observational Data from ARM

Now that we have plotted the simulation data from WRF, let’s take a look at the observations.

fs.glob(f"{path}/*")
fs.glob('pythia/lasso-sgp/high_res_obs/sgp*')
# Compare with ARM Observational Data

import os

from arm_test_data import DATASETS
import matplotlib.pyplot as plt

import act

# Place your username and token here
username = os.getenv('ARM_USERNAME')
token = os.getenv('ARM_PASSWORD')

# If the username and token are not set, use the existing sample file
if username is None or token is None or len(username) == 0 or len(token) == 0:
    filename_ceil = DATASETS.fetch('sgpceilC1.b1.20190101.000000.nc')
    ceil_ds = act.io.arm.read_arm_netcdf(filename_ceil, engine='netcdf4')
else:
    # Example to show how easy it is to download ARM data if a username/token are set
    results = act.discovery.download_arm_data(
        username, token, 'sgpceilC1.b1', '2022-01-14', '2022-01-19'
    )
    ceil_ds = act.io.arm.read_arm_netcdf(results)

# Adjust ceilometer data for plotting
ceil_ds = act.corrections.ceil.correct_ceil(ceil_ds, -9999.0)

# Plot up ceilometer backscatter using HomeyerRainbow CVD friendly colormap
# The same could be done with keyword 'cmap='HomeyerRainbow'
display = act.plotting.TimeSeriesDisplay(ceil_ds, subplot_shape=(1,), figsize=(15, 5))
display.plot('backscatter', subplot_index=(0,), cvd_friendly=True)
plt.show()
# ARM Plotting v2
import act
import numpy as np
import xarray as xr
import matplotlib.pyplot as plt

Plot Desired Variables

# Set your username and token here!
username = '***'
token = '***'

# Set the datastream and start/enddates
datastream = 'sgpaosmetE13.a1'
startdate = '2019-04-04'
enddate = '2019-04-05'

# Use ACT to easily download the data.  Watch for the data citation!  Show some support
# for ARM's instrument experts and cite their data if you use it in a publication
result = act.discovery.download_arm_data(username, token, datastream, startdate, enddate)
# Let's read in the data using ACT and check out the data
ds_mpl = act.io.read_arm_netcdf(result)

ds_mpl

Change variable (as desired), Apply QC, and Plot Again

# Let's take a look at the quality control information associated with a variable from the MPL
variable = 'temperature_ambient'

# First, for many of the ACT QC features, we need to get the dataset more to CF standard and that
# involves cleaning up some of the attributes and ways that ARM has historically handled QC
ds_mpl.clean.cleanup()

# Apply corrections for the ceilometer, correcting for the vertical height
#ds_mpl = act.corrections.ceil.correct_ceil(ds_mpl,-999.0)

# Next, let's take a look at visualizing the quality control information
# Create a plotting display object with 2 plots
display = act.plotting.TimeSeriesDisplay(ds_mpl, figsize=(10, 5), subplot_shape=(1,))

# # Plot up the variable in the first plot
display.plot(variable, subplot_index=(0,))

# # Plot up the QC variable in the second plot
# #display.qc_flag_block_plot(variable, subplot_index=(1,))
# plt.show()