Overview¶
The carbon cycle is a key part of ocean biogeochemistry and, more broadly, Earth’s climate system. Here we learn how to make maps of some key variables modeled by CESM related to the marine carbon cycle.
General setup
Subsetting
Processing data
Making maps
Prerequisites¶
| Concepts | Importance | Notes |
|---|---|---|
| Matplotlib | Necessary | |
| Intro to Cartopy | Necessary | |
| Dask Cookbook | Helpful | |
| Intro to Xarray | Helpful |
Time to learn: 15 min
Imports¶
import xarray as xr
import glob
import numpy as np
import matplotlib.pyplot as plt
import cartopy
import cartopy.crs as ccrs
import pop_tools
from dask.distributed import LocalCluster
import dask
import distributed
import s3fs
from module import adjust_pop_grid/home/runner/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/pop_tools/__init__.py:4: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81.
from pkg_resources import DistributionNotFound, get_distribution
General setup (see intro notebooks for explanations)¶
Connect to cluster¶
cluster = LocalCluster()
client = cluster.get_client()/home/runner/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/distributed/node.py:187: UserWarning: Port 8787 is already in use.
Perhaps you already have a cluster running?
Hosting the HTTP server on port 37911 instead
warnings.warn(
Bring in POP grid utilities¶
ds_grid = pop_tools.get_grid('POP_gx1v7')
lons = ds_grid.TLONG
lats = ds_grid.TLAT
depths = ds_grid.z_t * 0.01Downloading file 'inputdata/ocn/pop/gx1v7/grid/horiz_grid_20010402.ieeer8' from 'https://svn-ccsm-inputdata.cgd.ucar.edu/trunk/inputdata/ocn/pop/gx1v7/grid/horiz_grid_20010402.ieeer8' to '/home/runner/.pop_tools'.
---------------------------------------------------------------------------
ConnectionRefusedError Traceback (most recent call last)
File ~/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/urllib3/connection.py:198, in HTTPConnection._new_conn(self)
197 try:
--> 198 sock = connection.create_connection(
199 (self._dns_host, self.port),
200 self.timeout,
201 source_address=self.source_address,
202 socket_options=self.socket_options,
203 )
204 except socket.gaierror as e:
File ~/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/urllib3/util/connection.py:85, in create_connection(address, timeout, source_address, socket_options)
84 try:
---> 85 raise err
86 finally:
87 # Break explicitly a reference cycle
File ~/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/urllib3/util/connection.py:73, in create_connection(address, timeout, source_address, socket_options)
72 sock.bind(source_address)
---> 73 sock.connect(sa)
74 # Break explicitly a reference cycle
ConnectionRefusedError: [Errno 111] Connection refused
The above exception was the direct cause of the following exception:
NewConnectionError Traceback (most recent call last)
File ~/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/urllib3/connectionpool.py:787, in HTTPConnectionPool.urlopen(self, method, url, body, headers, retries, redirect, assert_same_host, timeout, pool_timeout, release_conn, chunked, body_pos, preload_content, decode_content, **response_kw)
786 # Make the request on the HTTPConnection object
--> 787 response = self._make_request(
788 conn,
789 method,
790 url,
791 timeout=timeout_obj,
792 body=body,
793 headers=headers,
794 chunked=chunked,
795 retries=retries,
796 response_conn=response_conn,
797 preload_content=preload_content,
798 decode_content=decode_content,
799 **response_kw,
800 )
802 # Everything went great!
File ~/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/urllib3/connectionpool.py:488, in HTTPConnectionPool._make_request(self, conn, method, url, body, headers, retries, timeout, chunked, response_conn, preload_content, decode_content, enforce_content_length)
487 new_e = _wrap_proxy_error(new_e, conn.proxy.scheme)
--> 488 raise new_e
490 # conn.request() calls http.client.*.request, not the method in
491 # urllib3.request. It also calls makefile (recv) on the socket.
File ~/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/urllib3/connectionpool.py:464, in HTTPConnectionPool._make_request(self, conn, method, url, body, headers, retries, timeout, chunked, response_conn, preload_content, decode_content, enforce_content_length)
463 try:
--> 464 self._validate_conn(conn)
465 except (SocketTimeout, BaseSSLError) as e:
File ~/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/urllib3/connectionpool.py:1093, in HTTPSConnectionPool._validate_conn(self, conn)
1092 if conn.is_closed:
-> 1093 conn.connect()
1095 # TODO revise this, see https://github.com/urllib3/urllib3/issues/2791
File ~/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/urllib3/connection.py:753, in HTTPSConnection.connect(self)
752 sock: socket.socket | ssl.SSLSocket
--> 753 self.sock = sock = self._new_conn()
754 server_hostname: str = self.host
File ~/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/urllib3/connection.py:213, in HTTPConnection._new_conn(self)
212 except OSError as e:
--> 213 raise NewConnectionError(
214 self, f"Failed to establish a new connection: {e}"
215 ) from e
217 sys.audit("http.client.connect", self, self.host, self.port)
NewConnectionError: <urllib3.connection.HTTPSConnection object at 0x7f0b8412c050>: Failed to establish a new connection: [Errno 111] Connection refused
The above exception was the direct cause of the following exception:
MaxRetryError Traceback (most recent call last)
File ~/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/requests/adapters.py:644, in HTTPAdapter.send(self, request, stream, timeout, verify, cert, proxies)
643 try:
--> 644 resp = conn.urlopen(
645 method=request.method,
646 url=url,
647 body=request.body,
648 headers=request.headers,
649 redirect=False,
650 assert_same_host=False,
651 preload_content=False,
652 decode_content=False,
653 retries=self.max_retries,
654 timeout=timeout,
655 chunked=chunked,
656 )
658 except (ProtocolError, OSError) as err:
File ~/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/urllib3/connectionpool.py:841, in HTTPConnectionPool.urlopen(self, method, url, body, headers, retries, redirect, assert_same_host, timeout, pool_timeout, release_conn, chunked, body_pos, preload_content, decode_content, **response_kw)
839 new_e = ProtocolError("Connection aborted.", new_e)
--> 841 retries = retries.increment(
842 method, url, error=new_e, _pool=self, _stacktrace=sys.exc_info()[2]
843 )
844 retries.sleep()
File ~/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/urllib3/util/retry.py:519, in Retry.increment(self, method, url, response, error, _pool, _stacktrace)
518 reason = error or ResponseError(cause)
--> 519 raise MaxRetryError(_pool, url, reason) from reason # type: ignore[arg-type]
521 log.debug("Incremented Retry for (url='%s'): %r", url, new_retry)
MaxRetryError: HTTPSConnectionPool(host='svn-ccsm-inputdata.cgd.ucar.edu', port=443): Max retries exceeded with url: /trunk/inputdata/ocn/pop/gx1v7/grid/horiz_grid_20010402.ieeer8 (Caused by NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x7f0b8412c050>: Failed to establish a new connection: [Errno 111] Connection refused'))
During handling of the above exception, another exception occurred:
ConnectionError Traceback (most recent call last)
Cell In[3], line 1
----> 1 ds_grid = pop_tools.get_grid('POP_gx1v7')
2 lons = ds_grid.TLONG
3 lats = ds_grid.TLAT
File ~/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/pop_tools/grid.py:137, in get_grid(grid_name, scrip)
134 nlon = grid_attrs['lateral_dims'][1]
136 # read horizontal grid
--> 137 horiz_grid_fname = INPUTDATA.fetch(grid_attrs['horiz_grid_fname'], downloader=downloader)
138 grid_file_data = np.fromfile(horiz_grid_fname, dtype='>f8', count=-1)
139 grid_file_data = grid_file_data.reshape((7, nlat, nlon))
File ~/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/pop_tools/grid.py:92, in fetch(self, fname, processor, downloader)
89 if downloader is None:
90 downloader = pooch.downloaders.choose_downloader(url)
---> 92 pooch.core.stream_download(url, full_path, known_hash, downloader, pooch=self)
94 if processor is not None:
95 return processor(str(full_path), action, self)
File ~/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/pooch/core.py:807, in stream_download(url, fname, known_hash, downloader, pooch, retry_if_failed)
803 try:
804 # Stream the file to a temporary so that we can safely check its
805 # hash before overwriting the original.
806 with temporary_file(path=str(fname.parent)) as tmp:
--> 807 downloader(url, tmp, pooch)
808 hash_matches(tmp, known_hash, strict=True, source=str(fname.name))
809 shutil.move(tmp, str(fname))
File ~/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/pooch/downloaders.py:220, in HTTPDownloader.__call__(self, url, output_file, pooch, check_only)
218 # pylint: enable=consider-using-with
219 try:
--> 220 response = requests.get(url, timeout=timeout, **kwargs)
221 response.raise_for_status()
222 content = response.iter_content(chunk_size=self.chunk_size)
File ~/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/requests/api.py:73, in get(url, params, **kwargs)
62 def get(url, params=None, **kwargs):
63 r"""Sends a GET request.
64
65 :param url: URL for the new :class:`Request` object.
(...) 70 :rtype: requests.Response
71 """
---> 73 return request("get", url, params=params, **kwargs)
File ~/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/requests/api.py:59, in request(method, url, **kwargs)
55 # By using the 'with' statement we are sure the session is closed, thus we
56 # avoid leaving sockets open which can trigger a ResourceWarning in some
57 # cases, and look like a memory leak in others.
58 with sessions.Session() as session:
---> 59 return session.request(method=method, url=url, **kwargs)
File ~/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/requests/sessions.py:589, in Session.request(self, method, url, params, data, headers, cookies, files, auth, timeout, allow_redirects, proxies, hooks, stream, verify, cert, json)
584 send_kwargs = {
585 "timeout": timeout,
586 "allow_redirects": allow_redirects,
587 }
588 send_kwargs.update(settings)
--> 589 resp = self.send(prep, **send_kwargs)
591 return resp
File ~/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/requests/sessions.py:703, in Session.send(self, request, **kwargs)
700 start = preferred_clock()
702 # Send the request
--> 703 r = adapter.send(request, **kwargs)
705 # Total elapsed time of the request (approximately)
706 elapsed = preferred_clock() - start
File ~/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/requests/adapters.py:677, in HTTPAdapter.send(self, request, stream, timeout, verify, cert, proxies)
673 if isinstance(e.reason, _SSLError):
674 # This branch is for urllib3 v1.22 and later.
675 raise SSLError(e, request=request)
--> 677 raise ConnectionError(e, request=request)
679 except ClosedPoolError as e:
680 raise ConnectionError(e, request=request)
ConnectionError: HTTPSConnectionPool(host='svn-ccsm-inputdata.cgd.ucar.edu', port=443): Max retries exceeded with url: /trunk/inputdata/ocn/pop/gx1v7/grid/horiz_grid_20010402.ieeer8 (Caused by NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x7f0b8412c050>: Failed to establish a new connection: [Errno 111] Connection refused'))ds_gridLoad the data¶
jetstream_url = 'https://js2.jetstream-cloud.org:8001/'
s3 = s3fs.S3FileSystem(anon=True, client_kwargs=dict(endpoint_url=jetstream_url))
# Generate a list of all files in CESM folder
s3path = 's3://pythia/ocean-bgc/cesm/g.e22.GOMIPECOIAF_JRA-1p4-2018.TL319_g17.4p2z.002branch/ocn/proc/tseries/month_1/*'
remote_files = s3.glob(s3path)
s3.invalidate_cache()
# Open all files from folder
fileset = [s3.open(file) for file in remote_files]
# Open with xarray
ds = xr.open_mfdataset(fileset, data_vars="minimal", coords='minimal', compat="override", parallel=True,
drop_variables=["transport_components", "transport_regions", 'moc_components'], decode_times=True)
dsSubsetting¶
variables =['FG_CO2','photoC_TOT_zint','POC_FLUX_100m']
keep_vars=['z_t','z_t_150m','dz','time_bound', 'time', 'TAREA','TLAT','TLONG'] + variables
ds = ds.drop_vars([v for v in ds.variables if v not in keep_vars])Processing - means in time and space¶
Pull in the function we defined in the nutrients notebook...
def year_mean(ds):
"""
Properly convert monthly data to annual means, taking into account month lengths.
Source: https://ncar.github.io/esds/posts/2021/yearly-averages-xarray/
"""
# Make a DataArray with the number of days in each month, size = len(time)
month_length = ds.time.dt.days_in_month
# Calculate the weights by grouping by 'time.year'
weights = (
month_length.groupby("time.year") / month_length.groupby("time.year").sum()
)
# Test that the sum of the year for each season is 1.0
np.testing.assert_allclose(weights.groupby("time.year").sum().values, np.ones((len(ds.groupby("time.year")), )))
# Calculate the weighted average
return (ds * weights).groupby("time.year").sum(dim="time")We also define a new function to take global mean in space.
def global_mean(ds, ds_grid, compute_vars, normalize=True, include_ms=False):
"""
Compute the global mean on a POP dataset.
Return computed quantity in conventional units.
"""
other_vars = list(set(ds.variables) - set(compute_vars))
# note TAREA is in cm^2, which affects units
if include_ms: # marginal seas!
surface_mask = ds_grid.TAREA.where(ds_grid.KMT > 0).fillna(0.)
else:
surface_mask = ds_grid.TAREA.where(ds_grid.REGION_MASK > 0).fillna(0.)
masked_area = {
v: surface_mask.where(ds[v].notnull()).fillna(0.)
for v in compute_vars
}
with xr.set_options(keep_attrs=True):
dso = xr.Dataset({
v: (ds[v] * masked_area[v]).sum(['nlat', 'nlon'])
for v in compute_vars
})
if normalize:
dso = xr.Dataset({
v: dso[v] / masked_area[v].sum(['nlat', 'nlon'])
for v in compute_vars
})
return dsoTake the long-term mean of our data set. We process monthly to annual with our custom function, then use xarray’s built-in .mean() function to process from annual data to a single mean over time, since each year is the same length.
ds = year_mean(ds).mean("year")Do some global integrals, to check if our values look reasonable¶
ds_glb = global_mean(ds, ds_grid, variables,normalize=False).compute()
# convert from nmol C/s to Pg C/yr
nmols_to_PgCyr = 1e-9 * 12. * 1e-15 * 365. * 86400.
for v in variables:
ds_glb[v] = ds_glb[v] * nmols_to_PgCyr
ds_glb[v].attrs['units'] = 'Pg C yr$^{-1}$'
ds_glbWe can compare these values to some observationally derived values. Each of these is calculated in a different way with combinations of data and models--please reference each linked paper for detailed discussion. Takahashi et al., 2002 estimate global air-sea CO flux to be 2.2 (+22% or −19%) Pg C yr. Our value (shown above as FG_CO2) is 2.779 Pg C yr. This value is outside of these bounds, but still on the same order of magnitude. We note that these values are calculated over different time periods, so we also don’t expect them to be an exact comparison. photoC_TOT_zint represents global vertically-integrated NPP; Behrenfeld and Falkowski, 1997 estimate this value to be 43.5 Pg C yr. Our value is 53.26 Pg C yr, which is within 22% of the observationally derived value. POC_FLUX_100m represents the particulate organic carbon flux at 100 m depth. DeVries and Weber, 2017 calculated this flux integrated over the entire euphotic zone to be 9.1 ± 0.2 Pg C yr. Since the depth ranges are different, this isn’t an exact comparison, but the orders of magnitude are similar. This first-pass analysis tells us that CESM is on the right track for these values.
Make some maps¶
First, convert from mmol/m3 cm/s to mmol/m2/day.
for var in variables:
ds[var] = ds[var] * 0.01 * 86400.Then, make a few maps of key carbon-related variables.
fig = plt.figure(figsize=(8,12))
ax = fig.add_subplot(3,1,1, projection=ccrs.Robinson(central_longitude=305.0))
ax.set_title('a) Air-sea CO$_2$ flux', fontsize=12,loc='left')
lon, lat, field = adjust_pop_grid(lons, lats, ds.FG_CO2)
pc=ax.pcolormesh(lon, lat, field, cmap='bwr',vmin=-5,vmax=5,transform=ccrs.PlateCarree())
land = cartopy.feature.NaturalEarthFeature('physical', 'land', scale='110m', edgecolor='k', facecolor='white', linewidth=0.5)
ax.add_feature(land)
cbar1 = fig.colorbar(pc, ax=ax,extend='both',label='mmol m$^{-2}$ d$^{-1}$')
ax = fig.add_subplot(3,1,2, projection=ccrs.Robinson(central_longitude=305.0))
ax.set_title('b) NPP', fontsize=12,loc='left')
lon, lat, field = adjust_pop_grid(lons, lats, ds.photoC_TOT_zint)
pc=ax.pcolormesh(lon, lat, field, cmap='Greens',vmin=0,vmax=100,transform=ccrs.PlateCarree())
land = cartopy.feature.NaturalEarthFeature('physical', 'land', scale='110m', edgecolor='k', facecolor='white', linewidth=0.5)
ax.add_feature(land)
cbar1 = fig.colorbar(pc, ax=ax,extend='max',label='mmol m$^{-2}$ d$^{-1}$')
ax = fig.add_subplot(3,1,3, projection=ccrs.Robinson(central_longitude=305.0))
ax.set_title('c) POC flux at 100m', fontsize=12,loc='left')
lon, lat, field = adjust_pop_grid(lons, lats, ds.POC_FLUX_100m)
pc=ax.pcolormesh(lon, lat, field, cmap='Oranges',vmin=0,vmax=10,transform=ccrs.PlateCarree())
land = cartopy.feature.NaturalEarthFeature('physical', 'land', scale='110m', edgecolor='k', facecolor='white', linewidth=0.5)
ax.add_feature(land)
cbar1 = fig.colorbar(pc, ax=ax,extend='max',label='mmol m$^{-2}$ d$^{-1}$');And close the Dask cluster we spun up at the beginning.
cluster.close()Summary¶
You’ve learned how to make maps of some key quantities related to oceanic carbon.
Resources and references¶
- Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., Bates, N., Wanninkhof, R., Feely, R. A., Sabine, C., Olafsson, J., & Nojiri, Y. (2002). Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep Sea Research Part II: Topical Studies in Oceanography, 49(9–10), 1601–1622. 10.1016/s0967-0645(02)00003-6
- Behrenfeld, M. J., & Falkowski, P. G. (1997). Photosynthetic rates derived from satellite‐based chlorophyll concentration. Limnology and Oceanography, 42(1), 1–20. 10.4319/lo.1997.42.1.0001
- DeVries, T., & Weber, T. (2017). The export and fate of organic matter in the ocean: New constraints from combining satellite and oceanographic tracer observations. Global Biogeochemical Cycles, 31(3), 535–555. 10.1002/2016gb005551
- (2013). In Ocean Biogeochemical Dynamics (pp. 318–358). Princeton University Press. 10.2307/j.ctt3fgxqx.12