
A copepod, a type of zooplankton. Art credit: Kristen Krumhardt
Overview¶
Zooplankton are tiny oceanic animals, making up the next step up after phytoplankton in the food web. Here we evaluate modeled zooplankton biomass and compare it to observational data.
General setup
Subsetting
Processing - long-term mean
Mapping zooplankton biomass at the surface
Comparing mesozooplankton biomass to observations
Making monthly climatology maps to compare to observations
Prerequisites¶
Concepts | Importance | Notes |
---|---|---|
Matplotlib | Necessary | |
Intro to Cartopy | Necessary | |
Dask Cookbook | Helpful | |
Intro to Xarray | Helpful |
Time to learn: 30 min
Imports¶
import xarray as xr
import glob
import numpy as np
import matplotlib.pyplot as plt
import cartopy
import cartopy.crs as ccrs
import pop_tools
from dask.distributed import LocalCluster
import s3fs
from module import adjust_pop_grid
/home/runner/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/pop_tools/__init__.py:4: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81.
from pkg_resources import DistributionNotFound, get_distribution
General setup (see intro notebooks for explanations)¶
Connect to cluster¶
cluster = LocalCluster()
client = cluster.get_client()
/home/runner/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/distributed/node.py:187: UserWarning: Port 8787 is already in use.
Perhaps you already have a cluster running?
Hosting the HTTP server on port 44247 instead
warnings.warn(
Bring in POP grid utilities¶
ds_grid = pop_tools.get_grid('POP_gx1v7')
lons = ds_grid.TLONG
lats = ds_grid.TLAT
depths = ds_grid.z_t * 0.01
Downloading file 'inputdata/ocn/pop/gx1v7/grid/horiz_grid_20010402.ieeer8' from 'https://svn-ccsm-inputdata.cgd.ucar.edu/trunk/inputdata/ocn/pop/gx1v7/grid/horiz_grid_20010402.ieeer8' to '/home/runner/.pop_tools'.
/home/runner/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/urllib3/connectionpool.py:1097: InsecureRequestWarning: Unverified HTTPS request is being made to host 'svn-ccsm-inputdata.cgd.ucar.edu'. Adding certificate verification is strongly advised. See: https://urllib3.readthedocs.io/en/latest/advanced-usage.html#tls-warnings
warnings.warn(
Downloading file 'inputdata/ocn/pop/gx1v7/grid/region_mask_20151008.ieeei4' from 'https://svn-ccsm-inputdata.cgd.ucar.edu/trunk/inputdata/ocn/pop/gx1v7/grid/region_mask_20151008.ieeei4' to '/home/runner/.pop_tools'.
/home/runner/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/urllib3/connectionpool.py:1097: InsecureRequestWarning: Unverified HTTPS request is being made to host 'svn-ccsm-inputdata.cgd.ucar.edu'. Adding certificate verification is strongly advised. See: https://urllib3.readthedocs.io/en/latest/advanced-usage.html#tls-warnings
warnings.warn(
Load the data¶
jetstream_url = 'https://js2.jetstream-cloud.org:8001/'
s3 = s3fs.S3FileSystem(anon=True, client_kwargs=dict(endpoint_url=jetstream_url))
# Generate a list of all files in CESM folder
s3path = 's3://pythia/ocean-bgc/cesm/g.e22.GOMIPECOIAF_JRA-1p4-2018.TL319_g17.4p2z.002branch/ocn/proc/tseries/month_1/*'
remote_files = s3.glob(s3path)
s3.invalidate_cache()
# Open all files from folder
fileset = [s3.open(file) for file in remote_files]
# Open with xarray
ds = xr.open_mfdataset(fileset, data_vars="minimal", coords='minimal', compat="override", parallel=True,
drop_variables=["transport_components", "transport_regions", 'moc_components'], decode_times=True)
ds
2025-09-09 01:47:35,542 - distributed.protocol.core - CRITICAL - Failed to deserialize
Traceback (most recent call last):
File "/home/runner/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/distributed/protocol/core.py", line 175, in loads
return msgpack.loads(
~~~~~~~~~~~~~^
frames[0], object_hook=_decode_default, use_list=False, **msgpack_opts
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
)
^
File "msgpack/_unpacker.pyx", line 194, in msgpack._cmsgpack.unpackb
File "/home/runner/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/distributed/protocol/core.py", line 159, in _decode_default
return merge_and_deserialize(
sub_header, sub_frames, deserializers=deserializers
)
File "/home/runner/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/contextlib.py", line 85, in inner
return func(*args, **kwds)
File "/home/runner/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/distributed/protocol/serialize.py", line 525, in merge_and_deserialize
return deserialize(header, merged_frames, deserializers=deserializers)
File "/home/runner/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/distributed/protocol/serialize.py", line 452, in deserialize
return loads(header, frames)
File "/home/runner/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/distributed/protocol/serialize.py", line 195, in serialization_error_loads
raise TypeError(msg)
TypeError: Could not serialize object of type Dataset
Traceback (most recent call last):
File "/home/runner/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/distributed/protocol/pickle.py", line 63, in dumps
result = pickle.dumps(x, **dump_kwargs)
TypeError: cannot pickle 'module' object
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/runner/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/distributed/protocol/pickle.py", line 68, in dumps
pickler.dump(x)
~~~~~~~~~~~~^^^
TypeError: cannot pickle 'module' object
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/runner/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/distributed/protocol/serialize.py", line 366, in serialize
header, frames = dumps(x, context=context) if wants_context else dumps(x)
~~~~~^^^^^^^^^^^^^^^^^^^^
File "/home/runner/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/distributed/protocol/serialize.py", line 78, in pickle_dumps
frames[0] = pickle.dumps(
~~~~~~~~~~~~^
x,
^^
buffer_callback=buffer_callback,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
protocol=context.get("pickle-protocol", None) if context else None,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
)
^
File "/home/runner/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/distributed/protocol/pickle.py", line 80, in dumps
result = cloudpickle.dumps(x, **dump_kwargs)
File "/home/runner/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/cloudpickle/cloudpickle.py", line 1537, in dumps
cp.dump(obj)
~~~~~~~^^^^^
File "/home/runner/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/cloudpickle/cloudpickle.py", line 1303, in dump
return super().dump(obj)
~~~~~~~~~~~~^^^^^
File "/home/runner/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/h5py/_hl/base.py", line 369, in __getnewargs__
raise TypeError("h5py objects cannot be pickled")
TypeError: h5py objects cannot be pickled
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
Cell In[4], line 14
11 fileset = [s3.open(file) for file in remote_files]
13 # Open with xarray
---> 14 ds = xr.open_mfdataset(fileset, data_vars="minimal", coords='minimal', compat="override", parallel=True,
15 drop_variables=["transport_components", "transport_regions", 'moc_components'], decode_times=True)
17 ds
File ~/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/xarray/backends/api.py:1812, in open_mfdataset(paths, chunks, concat_dim, compat, preprocess, engine, data_vars, coords, combine, parallel, join, attrs_file, combine_attrs, errors, **kwargs)
1807 datasets = [preprocess(ds) for ds in datasets]
1809 if parallel:
1810 # calling compute here will return the datasets/file_objs lists,
1811 # the underlying datasets will still be stored as dask arrays
-> 1812 datasets, closers = dask.compute(datasets, closers)
1814 # Combine all datasets, closing them in case of a ValueError
1815 try:
File ~/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/dask/base.py:681, in compute(traverse, optimize_graph, scheduler, get, *args, **kwargs)
678 expr = expr.optimize()
679 keys = list(flatten(expr.__dask_keys__()))
--> 681 results = schedule(expr, keys, **kwargs)
683 return repack(results)
File ~/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/distributed/utils_comm.py:416, in retry_operation(coro, operation, *args, **kwargs)
410 retry_delay_min = parse_timedelta(
411 dask.config.get("distributed.comm.retry.delay.min"), default="s"
412 )
413 retry_delay_max = parse_timedelta(
414 dask.config.get("distributed.comm.retry.delay.max"), default="s"
415 )
--> 416 return await retry(
417 partial(coro, *args, **kwargs),
418 count=retry_count,
419 delay_min=retry_delay_min,
420 delay_max=retry_delay_max,
421 operation=operation,
422 )
File ~/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/distributed/utils_comm.py:395, in retry(coro, count, delay_min, delay_max, jitter_fraction, retry_on_exceptions, operation)
393 delay *= 1 + random.random() * jitter_fraction
394 await asyncio.sleep(delay)
--> 395 return await coro()
File ~/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/distributed/core.py:1259, in PooledRPCCall.__getattr__.<locals>.send_recv_from_rpc(**kwargs)
1257 prev_name, comm.name = comm.name, "ConnectionPool." + key
1258 try:
-> 1259 return await send_recv(comm=comm, op=key, **kwargs)
1260 finally:
1261 self.pool.reuse(self.addr, comm)
File ~/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/distributed/core.py:1018, in send_recv(comm, reply, serializers, deserializers, **kwargs)
1016 await comm.write(msg, serializers=serializers, on_error="raise")
1017 if reply:
-> 1018 response = await comm.read(deserializers=deserializers)
1019 else:
1020 response = None
File ~/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/distributed/comm/tcp.py:248, in TCP.read(self, deserializers)
246 else:
247 try:
--> 248 msg = await from_frames(
249 frames,
250 deserialize=self.deserialize,
251 deserializers=deserializers,
252 allow_offload=self.allow_offload,
253 )
254 except EOFError:
255 # Frames possibly garbled or truncated by communication error
256 self.abort()
File ~/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/distributed/comm/utils.py:78, in from_frames(frames, deserialize, deserializers, allow_offload)
76 res = await offload(_from_frames)
77 else:
---> 78 res = _from_frames()
80 return res
File ~/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/distributed/comm/utils.py:61, in from_frames.<locals>._from_frames()
59 def _from_frames():
60 try:
---> 61 return protocol.loads(
62 frames, deserialize=deserialize, deserializers=deserializers
63 )
64 except EOFError:
65 if size > 1000:
File ~/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/distributed/protocol/core.py:175, in loads(frames, deserialize, deserializers)
172 return pickle.loads(sub_header["pickled-obj"], buffers=sub_frames)
173 return msgpack_decode_default(obj)
--> 175 return msgpack.loads(
176 frames[0], object_hook=_decode_default, use_list=False, **msgpack_opts
177 )
179 except Exception:
180 logger.critical("Failed to deserialize", exc_info=True)
File msgpack/_unpacker.pyx:194, in msgpack._cmsgpack.unpackb()
File ~/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/distributed/protocol/core.py:159, in loads.<locals>._decode_default(obj)
157 if "compression" in sub_header:
158 sub_frames = decompress(sub_header, sub_frames)
--> 159 return merge_and_deserialize(
160 sub_header, sub_frames, deserializers=deserializers
161 )
162 else:
163 return Serialized(sub_header, sub_frames)
File ~/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/contextlib.py:85, in ContextDecorator.__call__.<locals>.inner(*args, **kwds)
82 @wraps(func)
83 def inner(*args, **kwds):
84 with self._recreate_cm():
---> 85 return func(*args, **kwds)
File ~/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/distributed/protocol/serialize.py:525, in merge_and_deserialize(header, frames, deserializers)
521 merged = host_array_from_buffers(subframes)
523 merged_frames.append(merged)
--> 525 return deserialize(header, merged_frames, deserializers=deserializers)
File ~/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/distributed/protocol/serialize.py:452, in deserialize(header, frames, deserializers)
447 raise TypeError(
448 "Data serialized with %s but only able to deserialize "
449 "data with %s" % (name, str(list(deserializers)))
450 )
451 dumps, loads, wants_context = families[name]
--> 452 return loads(header, frames)
File ~/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/distributed/protocol/serialize.py:195, in serialization_error_loads(header, frames)
193 def serialization_error_loads(header, frames):
194 msg = "\n".join([codecs.decode(frame, "utf8") for frame in frames])
--> 195 raise TypeError(msg)
TypeError: Could not serialize object of type Dataset
Traceback (most recent call last):
File "/home/runner/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/distributed/protocol/pickle.py", line 63, in dumps
result = pickle.dumps(x, **dump_kwargs)
TypeError: cannot pickle 'module' object
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/runner/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/distributed/protocol/pickle.py", line 68, in dumps
pickler.dump(x)
~~~~~~~~~~~~^^^
TypeError: cannot pickle 'module' object
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/runner/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/distributed/protocol/serialize.py", line 366, in serialize
header, frames = dumps(x, context=context) if wants_context else dumps(x)
~~~~~^^^^^^^^^^^^^^^^^^^^
File "/home/runner/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/distributed/protocol/serialize.py", line 78, in pickle_dumps
frames[0] = pickle.dumps(
~~~~~~~~~~~~^
x,
^^
buffer_callback=buffer_callback,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
protocol=context.get("pickle-protocol", None) if context else None,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
)
^
File "/home/runner/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/distributed/protocol/pickle.py", line 80, in dumps
result = cloudpickle.dumps(x, **dump_kwargs)
File "/home/runner/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/cloudpickle/cloudpickle.py", line 1537, in dumps
cp.dump(obj)
~~~~~~~^^^^^
File "/home/runner/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/cloudpickle/cloudpickle.py", line 1303, in dump
return super().dump(obj)
~~~~~~~~~~~~^^^^^
File "/home/runner/micromamba/envs/ocean-bgc-cookbook-dev/lib/python3.13/site-packages/h5py/_hl/base.py", line 369, in __getnewargs__
raise TypeError("h5py objects cannot be pickled")
TypeError: h5py objects cannot be pickled
Subsetting¶
variables =['mesozooC', 'microzooC']
keep_vars=['z_t','z_t_150m','dz','time_bound','time','TAREA','TLAT','TLONG'] + variables
ds = ds.drop_vars([v for v in ds.variables if v not in keep_vars])
Processing - long-term mean¶
Pull in the function we defined in the nutrients notebook...
def year_mean(ds):
"""
Source: https://ncar.github.io/esds/posts/2021/yearly-averages-xarray/
"""
# Make a DataArray with the number of days in each month, size = len(time)
month_length = ds.time.dt.days_in_month
# Calculate the weights by grouping by 'time.year'
weights = (
month_length.groupby("time.year") / month_length.groupby("time.year").sum()
)
# Test that the sum of the weights for each year is 1.0
np.testing.assert_allclose(weights.groupby("time.year").sum().values, np.ones((len(ds.groupby("time.year")), )))
# Calculate the weighted average
return (ds * weights).groupby("time.year").sum(dim="time")
# Take the long-term mean of our data set, processing years and months separately
ds_annual = year_mean(ds).mean("year")
Plot mesozooplankton and microzooplankton biomass at the surface¶
fig = plt.figure(figsize=(8,5))
ax = fig.add_subplot(2,1,1, projection=ccrs.Robinson(central_longitude=305.0))
ax.set_title('microzooC at surface', fontsize=12)
lon, lat, field = adjust_pop_grid(lons, lats, ds_annual.microzooC.isel(z_t_150m=0))
pc=ax.pcolormesh(lon, lat, field, cmap='Blues',vmin=0,vmax=2,transform=ccrs.PlateCarree())
cbar1 = fig.colorbar(pc, ax=ax,extend='max',label='microzooC (mmol m$^{-3}$)')
land = cartopy.feature.NaturalEarthFeature('physical', 'land', scale='110m', edgecolor='k', facecolor='white', linewidth=0.5)
ax.add_feature(land)
ax = fig.add_subplot(2,1,2, projection=ccrs.Robinson(central_longitude=305.0))
ax.set_title('mesozooC at surface', fontsize=12)
lon, lat, field = adjust_pop_grid(lons, lats, ds_annual.mesozooC.isel(z_t_150m=0))
pc=ax.pcolormesh(lon, lat, field, cmap='Oranges',vmin=0,vmax=4,transform=ccrs.PlateCarree())
cbar1 = fig.colorbar(pc, ax=ax,extend='max',label='mesozooC (mmol m$^{-3}$)')
land = cartopy.feature.NaturalEarthFeature('physical', 'land', scale='110m', edgecolor='k', facecolor='white', linewidth=0.5)
ax.add_feature(land)
Compare mesozooplankton biomass to COPEPOD database¶
We use data compiled through the COPEPOD project (Moriarty & O’Brien, 2013). This data has been pre-processed, but the raw data is available on the COPEPOD website.
Read in COPEPOD data¶
copepod_obs_path = 's3://pythia/ocean-bgc/obs/copepod-2012__cmass-m00-qtr.zarr'
copepod_obs = s3fs.S3Map(root=copepod_obs_path, s3=s3)
ds_copepod = xr.open_dataset(copepod_obs, engine="zarr")
### converting grams to moles
ds_copepod['copepod_C']=ds_copepod.copepod_C/12.011
ds_copepod
Plot¶
fig = plt.figure(figsize=(12,3))
ax = fig.add_subplot(1,2,1, projection=ccrs.Robinson(central_longitude=305.0))
ax.set_title('COPEPOD dataset', fontsize=12)
pc=ax.pcolormesh(ds_copepod.lon, ds_copepod.lat, ds_copepod.copepod_C, cmap='Reds',vmin=0,vmax=2,transform=ccrs.PlateCarree())
land = cartopy.feature.NaturalEarthFeature('physical', 'land', scale='110m', edgecolor='k', facecolor='white', linewidth=0.5)
ax.add_feature(land)
ax = fig.add_subplot(1,2,2, projection=ccrs.Robinson(central_longitude=305.0))
ax.set_title('CESM ${\it Mesozooplankton}$ biomass', fontsize=12)
lon, lat, field = adjust_pop_grid(lons, lats, ds_annual.mesozooC.mean(dim='z_t_150m'))
pc=ax.pcolormesh(lon, lat, field, cmap='Reds',vmin=0,vmax=2,transform=ccrs.PlateCarree())
land = cartopy.feature.NaturalEarthFeature('physical', 'land', scale='110m', edgecolor='k', facecolor='white', linewidth=0.5)
ax.add_feature(land)
fig.subplots_adjust(right=0.8)
cbar_ax = fig.add_axes([0.85, 0.15, 0.02, 0.7])
fig.colorbar(pc, cax=cbar_ax,extend='max', label='top 150m/200m mean (mmol m$^{-3}$)');
Making monthly climatology maps to compare to observations¶
Compare to observation-based GLMM (Generalized Linear Mixed Model) of global mesozooplankton biomass climatology¶
This data is from Heneghan et al., 2020, which includes the COPEPOD dataset we used previously as well as additional observations, with some pre-processing.
mesozoo_obs_path = 'data/obsglmm_zmeso_vint_200m_monthly_climatology.nc'
ds_copepod_clim = xr.open_dataset(mesozoo_obs_path)
ds_copepod_clim.zmeso200.attrs['units'] = 'mgC m-2'
months = ['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec']
Make our CESM data into a monthly climatology¶
mon_ds = ds.copy()
mon_ds = ds.groupby('time.month').mean('time')
### depth integrate and convert model to mg C/m2
mon_ds['mesozooC_zint'] = ((mon_ds.mesozooC) * 10.).sum(dim='z_t_150m') #in mmol/m2
mon_ds['mesozooC_zint'] = mon_ds['mesozooC_zint'] * 12.011 #convert to mgC/m2
mon_ds['mesozooC_zint'].attrs['units'] = 'mgC m-2'
Plot¶
fig = plt.figure(figsize=(5,18))
for row in np.arange(1,13):
ts=row-1
plot = row*2 - 1
ax = fig.add_subplot(12,2,plot, projection=ccrs.Robinson(central_longitude=305.0))
ax.set_title(months[ts]+' obs', fontsize=12)
pc=ax.pcolormesh(ds_copepod_clim.Lon, ds_copepod_clim.Lat, ds_copepod_clim.zmeso200.isel(month=ts),
cmap='Reds',vmin=0,vmax=4000,transform=ccrs.PlateCarree())
land = cartopy.feature.NaturalEarthFeature('physical', 'land', scale='110m', edgecolor='k', facecolor='white', linewidth=0.5)
ax.add_feature(land)
plot = row*2
ax = fig.add_subplot(12,2,plot, projection=ccrs.Robinson(central_longitude=305.0))
ax.set_title(months[ts]+' CESM', fontsize=12)
tmp = mon_ds.mesozooC_zint.isel(month=ts)
lon, lat, field = adjust_pop_grid(lons, lats, tmp)
pc=ax.pcolormesh(lon, lat, field, cmap='Reds',vmin=0,vmax=4000,transform=ccrs.PlateCarree())
land = cartopy.feature.NaturalEarthFeature('physical', 'land', scale='110m', edgecolor='k', facecolor='white', linewidth=0.5)
ax.add_feature(land)
cbar_ax = fig.add_axes([0.92, 0.15, 0.03, 0.7])
fig.colorbar(pc, cax=cbar_ax,extend='max', label='Depth-integrated copepod biomass (mg m$^{-2}$)');
And close the Dask cluster we spun up at the beginning.
cluster.close()
Summary¶
You’ve learned how to evaluate zooplankton biomass modeled by CESM-MARBL and compare it to observations.
Resources and references¶
- Moriarty, R., & O’Brien, T. D. (2013). Distribution of mesozooplankton biomass in the global ocean. Earth System Science Data, 5(1), 45–55. 10.5194/essd-5-45-2013
- Heneghan, R. F., Everett, J. D., Sykes, P., Batten, S. D., Edwards, M., Takahashi, K., Suthers, I. M., Blanchard, J. L., & Richardson, A. J. (2020). A functional size-spectrum model of the global marine ecosystem that resolves zooplankton composition. Ecological Modelling, 435, 109265. 10.1016/j.ecolmodel.2020.109265
- Petrik, C. M., Luo, J. Y., Heneghan, R. F., Everett, J. D., Harrison, C. S., & Richardson, A. J. (2022). Assessment and Constraint of Mesozooplankton in CMIP6 Earth System Models. Global Biogeochemical Cycles, 36(11). 10.1029/2022gb007367