Skip to article frontmatterSkip to article content

Great Circle Arcs and Path

Indiana Jones Plane Flying Gif

Great Circle Arcs and Path


Overview

Imagine a plane flying from Cario to Hong Kong. To a passenger, the plane appears to travel a straight path, but the plane actually curves around the surface of the Earth held down by the gravity of the planet.

Great circles are circles that circumnavigate the globe.

  1. Distance between Points on a Great Circle Arc
  2. Spherical Distance to Degrees
  3. Determine the Bearing of a Great Circle Arc
  4. Generate a Great Circle Arc with Intermediate Points
  5. Determine the Midpoint of a Great Circle Arc
  6. Generate a Great Circle Path
  7. Determine an Antipodal Point
  8. Compare Great Circle Arc to Rhumb Line (TODO)

Prerequisites

ConceptsImportanceNotes
NumpyNecessaryUsed to work with large arrays
PandasNecessaryUsed to read in and organize data (in particular dataframes)
Intro to CartopyHelpfulWill be used for adding maps to plotting
MatplotlibHelpfulWill be used for plotting
  • Time to learn: 40 minutes

Imports

  • Import Packages
  • Setup location dataframe with coordinates
import pandas as pd       # reading in data for location information from text file
import numpy as np        # working with arrays, vectors, cross/dot products, and radians

from pyproj import Geod   # working with the Earth as an ellipsod (WGS-84)
import geopy.distance     # working with the Earth as an ellipsod
# Get all Coordinates for Locations
location_df = pd.read_csv("../location_full_coords.txt")
location_df = location_df.rename(columns=lambda x: x.strip()) # strip excess white space from column names and values
location_df.head()
Loading...
location_df.index = location_df["name"]

Distance Between Points on a Great Circle Arc

Determine Distance Between Points Mathematically via Unit Sphere

Distance between point A (latA, lonA) and point B (latB, lonB):

d=acos(sin(latA)sin(latB)+cos(latA)cos(latB)cos(lonAlonB))d=acos(sin(latA)*sin(latB)+cos(latA)*cos(latB)*cos(lonA-lonB))

For shorter distances (with less rounding errors):

d=2asin(sin(latAlatB2)2+cos(latA)cos(latB)sin(lonAlonB2)2)d=2*asin(\sqrt{sin(\frac{latA-latB}{2})^2 + cos(latA)*cos(latB)*sin(\frac{lonA-lonB}{2})^2})
def distance_between_points_default(start_point=None, end_point=None):
    earth_radius = 6378137  # meters
    latA = np.deg2rad(location_df.loc[start_point, "latitude"])
    lonA = np.deg2rad(location_df.loc[start_point, "longitude"])
    latB = np.deg2rad(location_df.loc[end_point, "latitude"])
    lonB = np.deg2rad(location_df.loc[end_point, "longitude"])

    distance_default = np.arccos(np.sin(latA)*np.sin(latB)+np.cos(latA)*np.cos(latB)*np.cos(lonA-lonB))
    return distance_default * earth_radius
def distance_between_points_small(start_point=None, end_point=None):
    earth_radius = 6378137  # meters
    latA = np.deg2rad(location_df.loc[start_point, "latitude"])
    lonA = np.deg2rad(location_df.loc[start_point, "longitude"])
    latB = np.deg2rad(location_df.loc[end_point, "latitude"])
    lonB = np.deg2rad(location_df.loc[end_point, "longitude"])

    distance_small = 2 * np.arcsin(np.sqrt((np.sin((latA-latB)/2))**2 + np.cos(latA)*np.cos(latB)*(np.sin((lonA-lonB)/2))**2))
    return distance_small * earth_radius

Additional types of distance measuerments:

  • Haversine
  • Vincenty Sphere Great Circle Distance
  • Vincenty Ellipsoid Great Circle Distance
  • Meeus Great Circle Distance

Determine Distance Points via Python Package pyproj

pyproj accounts for different ellipsoids like WGS-84.

First, setup a ellipsoid to represent the Earth (“WGS-84”):

# Distance between Boulder and Boston
geodesic = Geod(ellps="WGS84")
_, _, distance_meter =  geodesic.inv(location_df.loc["boulder", "longitude"],
                                     location_df.loc["boulder", "latitude"],
                                     location_df.loc["boston", "longitude"],
                                     location_df.loc["boston", "latitude"])

print(f"Distance between coordinates (ellipsoid)   = {distance_meter/1000} km")
distance_unit_sphere_default = distance_between_points_default("boulder", "boston")
print(f"Distance between coordinates (unit sphere) = {distance_unit_sphere_default/1000} km")
distance_unit_sphere_small = distance_between_points_small("boulder", "boston")
print(f"Distance between coordinates (unit sphere) = {distance_unit_sphere_small/1000} km")
Distance between coordinates (ellipsoid)   = 2862.5974799145215 km
Distance between coordinates (unit sphere) = 2858.532213639344 km
Distance between coordinates (unit sphere) = 2858.5322136393447 km

Compared to the distance from the associated airports in Denver and Boston (DIA to Logan) which has a distance of 2823 km, using Denver instead of Boulder.

Spherical Distance to Degrees

Convert a distance from meters to degrees, measured along the great circle sphere with a constant spherical radius of ~6371 km (mean radius of Earth).

# assumes a spherical Earth
earth_radius = 6378.137 # km

def km_to_degree_distance(distance_km=None):
    return distance_km / (2 * earth_radius * np.pi / 360)

def degree_to_km_distance(distance_degree=None):
    return distance_degree * (2 * earth_radius * np.pi / 360)
print(f"300 km to degrees = {km_to_degree_distance(300)} degrees")
print(f"6.381307 degree to km = {degree_to_km_distance(6.381307)} km")
300 km to degrees = 2.6949458523585643 degrees
6.381307 degree to km = 710.3638458355522 km

Determine the Bearing of a Great Circle Arc

Determine the Bearing Mathematically via Unit Sphere

Bearing between point A (latA, lonA) and point B (latB, lonB):

x=cos(latA)sin(latB)sin(latA)cos(latB)cos(lonBlonA)x = cos(latA) * sin(latB) - sin(latA) * cos(latB) * cos(lonB - lonA)
y=sin(lonBlonA)cos(latB)y = sin(lonB - lonA) * cos(latB)
θ=atan2(y,x)θ = atan2(y, x)
def bearing_between_points_unit_sphere(start_point=None, end_point=None):
    latA = np.deg2rad(location_df.loc[start_point, "latitude"])
    lonA = np.deg2rad(location_df.loc[start_point, "longitude"])
    latB = np.deg2rad(location_df.loc[end_point, "latitude"])
    lonB = np.deg2rad(location_df.loc[end_point, "longitude"])

    x = np.cos(latA) * np.sin(latB) - np.sin(latA) * np.cos(latB) * np.cos(lonB - lonA)
    y = np.sin(lonB - lonA) * np.cos(latB)
    bearing = np.arctan2(y, x)
    return np.rad2deg(bearing) % 360

Determine the Bearing via Python Package pyproj

pyproj accounts for different ellipsoids like WGS-84:

def bearing_between_points_ellps(start_point=None, end_point=None):
    geodesic = Geod(ellps="WGS84")
    fwd_bearing, _, _ =  geodesic.inv(location_df.loc[start_point, "longitude"],
                                        location_df.loc[start_point, "latitude"],
                                        location_df.loc[end_point, "longitude"],
                                        location_df.loc[end_point, "latitude"])
    return fwd_bearing
### Compare Unit Sphere and Ellipsoid
beaing_ellps = bearing_between_points_ellps("boulder", "boston")
print(f"forward bearing between coordinates (ellipsoid)   = {beaing_ellps} Degrees")
bearing_us = bearing_between_points_unit_sphere("boulder", "boston")
print(f"forward bearing between coordinates (unit sphere) = {bearing_us} Degrees")
forward bearing between coordinates (ellipsoid)   = 73.51048829569022 Degrees
forward bearing between coordinates (unit sphere) = 73.49180375272644 Degrees

Generating a Great Circle Arc with Intermediates Points

Determine Intermediate Points Mathemetically via Unit Sphere

Determine the points (lat, lon) a given fraction of a distance (d) between a starting points A (latA, lonA) and the final point B (latB, lonB) where f is a fraction along the great circle arc. f=0 is point A and f=1 is point B.

Note: The points cannot be antipodal because the path is undefined

Where, antipodal is defined by:

latA+latB=0latA + latB = 0

abs(lonAlonB)=piabs(lonA - lonB) = pi

Where the distance between two points is the angular distance:

d=total distance of arcearth’s radiusd = \frac{\text{total distance of arc}}{\text{earth's radius}}

The intermediate points (lat, lon) along a given path starting point to end point:

A=sin((1f)dsin(d)A = sin(\frac{(1-f) * d}{sin(d)}
B=sin(fd)sin(d)B = \frac{sin(f*d)}{sin(d)}
x=Acos(latA)cos(lonA)+Bcos(latB)cos(lonB)x = A * cos(latA) * cos(lonA) + B * cos(latB) * cos(lonB)
y=Acos(latA)sin(lonA)+Bcos(latB)sin(lonB)y = A * cos(latA) * sin(lonA) + B * cos(latB) * sin(lonB)
z=Asin(latA)+Bsin(latB)z = A * sin(latA) + B * sin(latB)
lat=atan2(z,x2+y2)lat = atan2(z, \sqrt{x^2 + y^2})
lon=atan2(y,x)lon = atan2(y, x)
def intermediate_points(start_point=None, end_point=None,
                        fraction=None, distance=None):
    earth_radius = 6378137  # meters
    total_distance = distance / earth_radius
    latA = np.deg2rad(location_df.loc[start_point, "latitude"])
    lonA = np.deg2rad(location_df.loc[start_point, "longitude"])
    latB = np.deg2rad(location_df.loc[end_point, "latitude"])
    lonB = np.deg2rad(location_df.loc[end_point, "longitude"])

    A = np.sin((1-fraction) * total_distance) / np.sin(total_distance)
    B = np.sin(fraction * total_distance) / np.sin(total_distance)
    x = (A * np.cos(latA) * np.cos(lonA)) + (B * np.cos(latB) * np.cos(lonB))
    y = (A * np.cos(latA) * np.sin(lonA)) + (B * np.cos(latB) * np.sin(lonB))
    z = (A * np.sin(latA)) + (B * np.sin(latB))
    lat = np.arctan2(z, np.sqrt(x**2 + y**2))
    lon = np.arctan2(y, x)
    return (np.rad2deg(lat), np.rad2deg(lon))

def calculate_intermediate_pts(start_point=None, end_point=None,
                               fraction=None, total_distance_meter=None):
    fractions = np.arange(0, 1+fraction, fraction)
    intermediate_lat_lon = []
    for fractional in fractions:
        intermediate_pts = intermediate_points(start_point, end_point,
                                                fractional, total_distance_meter)
        intermediate_lat_lon.append(intermediate_pts)
    return intermediate_lat_lon

Determine Intermediate Points via Python Package pyproj and geopy

  1. Interpolate with N total equally spaced number of points
  2. Interpolate every N meters
  3. Interpolate a fractional distance along arc
def interpolate_points_along_gc(lat_start,
                                lon_start,
                                lat_end,
                                lon_end,
                                distance_between_points_meter): 
    lat_lon_points = [(lat_start, lon_start)]
    
    # move to next point when distance between points is less than the equal distance
    move_to_next_point = True
    while(move_to_next_point):
        forward_bearing, _, distance_meters = geodesic.inv(lon_start,
                                                            lat_start, 
                                                            lon_end,
                                                            lat_end)
        if distance_meters < distance_between_points_meter:
            # ends before overshooting
            move_to_next_point = False
        else:
            start_point = geopy.Point(lat_start, lon_start)
            distance_to_move = geopy.distance.distance(
                            kilometers=distance_between_points_meter /
                            1000)  # distance to move towards the next point
            final_position = distance_to_move.destination(
                            start_point, bearing=forward_bearing)
            lat_lon_points.append((final_position.latitude, final_position.longitude))
            # new starting position is newly found end position
            lon_start, lat_start = final_position.longitude, final_position.latitude
    lat_lon_points.append((lat_end, lon_end))
    return lat_lon_points

Plot Arcs as Points on a World Map

import matplotlib.pyplot as plt
from cartopy import crs as ccrs, feature as cfeature

def plot_coordinate(lst_of_coords=None, title=None):
    # Set up world map plot on the United States
    fig = plt.subplots(figsize=(15, 10))
    projection_map = ccrs.PlateCarree()
    ax = plt.axes(projection=projection_map)
    lon_west, lon_east, lat_south, lat_north = -130, -60, 20, 60
    ax.set_extent([lon_west, lon_east, lat_south, lat_north], crs=projection_map)
    ax.coastlines(color="black")
    ax.add_feature(cfeature.STATES, edgecolor="black")
    
    # Plot Latitude/Longitude Location
    longitudes = [x[1] for x in lst_of_coords] # longitude
    latitudes = [x[0] for x in lst_of_coords] # latitude
    plt.plot(longitudes, latitudes)
    plt.scatter(longitudes, latitudes)
    
    # Setup Axis Limits and Title/Labels
    plt.title(title)
    plt.show()

Interpolate with N Total Equally Spaced Points

n_total_points = 10 # total points (n points)
distance_between_points_meter = distance_meter / (n_total_points + 1)
print(f"Each point will be separated by {distance_between_points_meter} meters ({distance_between_points_meter/1000} km)")
Each point will be separated by 260236.13453768377 meters (260.23613453768377 km)
lat_start, lon_start = location_df.loc[["boulder"]]["latitude"].iloc[0], location_df.loc[["boulder"]]["longitude"].iloc[0]
lat_end, lon_end = location_df.loc[["boston"]]["latitude"].iloc[0], location_df.loc[["boston"]]["longitude"].iloc[0]

intermediate_geodesic = interpolate_points_along_gc(lat_start,
                                          lon_start,
                                          lat_end,
                                          lon_end,
                                          distance_between_points_meter)
print(f"{len(intermediate_geodesic)} Total Points")
intermediate_geodesic
12 Total Points
[(np.float64(40.015), np.float64(-105.2705)), (40.64283438472448, -102.32002071588883), (41.19386139956729, -99.31719425393653), (41.665293789240074, -96.2672998277903), (42.05464865958041, -93.17653047007545), (42.35980367525435, -90.05192021556942), (42.579048241302566, -86.9012334462751), (42.71112689737456, -83.73281874084786), (42.75527239726804, -80.5554326250441), (42.711226442193585, -77.37804142647055), (42.579246749547636, -74.20961159223961), (np.float64(42.3601), np.float64(-71.0589))]
plot_coordinate(intermediate_geodesic,
                title=f"Interpolate {n_total_points} Points")
/home/runner/micromamba/envs/cookbook-gc/lib/python3.13/site-packages/cartopy/io/__init__.py:241: DownloadWarning: Downloading: https://naturalearth.s3.amazonaws.com/50m_physical/ne_50m_coastline.zip
  warnings.warn(f'Downloading: {url}', DownloadWarning)
/home/runner/micromamba/envs/cookbook-gc/lib/python3.13/site-packages/cartopy/io/__init__.py:241: DownloadWarning: Downloading: https://naturalearth.s3.amazonaws.com/50m_cultural/ne_50m_admin_1_states_provinces_lakes.zip
  warnings.warn(f'Downloading: {url}', DownloadWarning)
<Figure size 1500x1000 with 2 Axes>

Interpolate every N meters

distance_between_points_meter = 112000
print(f"Each point will be separated by {distance_between_points_meter} meters ({distance_between_points_meter/1000} km)")
Each point will be separated by 112000 meters (112.0 km)
lat_start, lon_start = location_df.loc["boulder", "latitude"], location_df.loc["boulder", "longitude"]
lat_end, lon_end = location_df.loc["boston", "latitude"], location_df.loc["boston", "longitude"]

intermediate_geodesic = interpolate_points_along_gc(lat_start,
                                          lon_start,
                                          lat_end,
                                          lon_end,
                                          distance_between_points_meter)
print(f"{len(intermediate_geodesic)} Total Points")
intermediate_geodesic
27 Total Points
[(np.float64(40.015), np.float64(-105.2705)), (40.29443152420481, -104.00739372929635), (40.55994883031889, -102.73410083358552), (40.811312209497714, -101.45097760323463), (41.04829010633232, -100.15841313140038), (41.27065999040772, -98.8568290209118), (41.47820922569627, -97.54667886388195), (41.67073593071231, -96.22844748540258), (41.848049822017195, -94.90264994540797), (42.00997303342117, -93.56983029584387), (42.156340903095064, -92.23056009359964), (42.287002720790326, -90.88543667319323), (42.40182242747838, -89.53508118686946), (42.50067925996674, -88.1801364234981), (42.583468333429785, -86.82126442135142), (42.65010115530707, -85.45914389340653), (42.700506064664665, -84.09446748716023), (42.73462859187762, -82.72793890397021), (42.75243173435998, -81.36026990555973), (42.75389614502746, -79.99217723746453), (42.73902023120852, -78.62437950079696), (42.707820162798164, -77.25759400470386), (42.66032978955507, -75.89253363227026), (42.596600468550456, -74.52990375235937), (42.51670080386281, -73.1703992089883), (42.42071630165334, -71.81470141834599), (np.float64(42.3601), np.float64(-71.0589))]
plot_coordinate(intermediate_geodesic,
                title=f"Interpolate every {distance_between_points_meter/1000} km")
<Figure size 1500x1000 with 2 Axes>

Interpolate a fractional distance along arc

fraction = 1/10
distance_between_points_meter = fraction * distance_meter
print(f"Each point will be separated by {distance_between_points_meter} meters ({distance_between_points_meter/1000} km)")
Each point will be separated by 286259.74799145217 meters (286.2597479914522 km)
lat_start, lon_start = location_df.loc["boulder", "latitude"], location_df.loc["boulder", "longitude"]
lat_end, lon_end = location_df.loc["boston", "latitude"], location_df.loc["boston", "longitude"]

intermediate_ellipsoid = interpolate_points_along_gc(lat_start,
                                          lon_start,
                                          lat_end,
                                          lon_end,
                                          distance_between_points_meter)
print(f"{len(intermediate_ellipsoid)} Total Points")
intermediate_ellipsoid
11 Total Points
[(np.float64(40.015), np.float64(-105.2705)), (40.70144152851926, -102.0220139666611), (41.29459964930597, -98.7107954391427), (41.790822409112124, -95.34405626799516), (42.18692017366623, -91.93032741511365), (42.4802543416051, -88.47932636547252), (42.66881568690329, -85.00175846666659), (42.75128706952139, -81.50905885116296), (42.72708599453554, -78.01308797522954), (42.59638380227174, -74.52579917182065), (np.float64(42.3601), np.float64(-71.0589))]
plot_coordinate(intermediate_ellipsoid,
                title=f"(Ellipsoid) Interpolate on Fraction {fraction}")
<Figure size 1500x1000 with 2 Axes>
distance_unit_sphere_default = distance_between_points_default("boulder", "boston")
intermediate_unit_sphere = calculate_intermediate_pts("boulder", "boston",
                                               fraction, distance_unit_sphere_default)
print(f"{len(intermediate_unit_sphere)} Total Points")
intermediate_unit_sphere
11 Total Points
[(np.float64(40.015), np.float64(-105.2705)), (np.float64(40.69956840796515), np.float64(-102.0224051615289)), (np.float64(41.291305596308824), np.float64(-98.71150732723615)), (np.float64(41.786544424077), np.float64(-95.3450112546059)), (np.float64(42.1820804843035), np.float64(-91.93144054027105)), (np.float64(42.475261312703864), np.float64(-88.48050569778584)), (np.float64(42.66406520473303), np.float64(-85.00290620334833)), (np.float64(42.74716436193266), np.float64(-81.51007310432796)), (np.float64(42.723967826794556), np.float64(-78.01386515980239)), (np.float64(42.59464096704978), np.float64(-74.52623685097386)), (np.float64(42.3601), np.float64(-71.0589))]
plot_coordinate(intermediate_unit_sphere,
                title=f"(Unit Sphere) Interpolate on Fraction {fraction}")
<Figure size 1500x1000 with 2 Axes>
# compare math and geodesic outputs
for i in range(len(intermediate_ellipsoid)):
    _, _, distance_m = geodesic.inv(intermediate_ellipsoid[i][0], intermediate_ellipsoid[i][1],
                                   intermediate_unit_sphere[i][0], intermediate_unit_sphere[i][1])
    if np.isnan(distance_m): distance_m = 0
    print(f"Distance between ellipsoid/unit sphere defined point {i}: {distance_m} meters")
Distance between ellipsoid/unit sphere defined point 0: 0 meters
Distance between ellipsoid/unit sphere defined point 1: 0 meters
Distance between ellipsoid/unit sphere defined point 2: 0 meters
Distance between ellipsoid/unit sphere defined point 3: 0 meters
Distance between ellipsoid/unit sphere defined point 4: 0 meters
Distance between ellipsoid/unit sphere defined point 5: 132.55154860348821 meters
Distance between ellipsoid/unit sphere defined point 6: 136.26443374199349 meters
Distance between ellipsoid/unit sphere defined point 7: 132.0972186842191 meters
Distance between ellipsoid/unit sphere defined point 8: 112.95654352480192 meters
Distance between ellipsoid/unit sphere defined point 9: 71.29186326482345 meters
Distance between ellipsoid/unit sphere defined point 10: 0.0 meters

Determine the Midpoint of a Great Circle Arc

The midpoint of an arc can be determiend as a fractional distance along an arc where f = 0.5.

midpoint = distance_meter / 2
lat_start, lon_start = location_df.loc["boulder", "latitude"], location_df.loc["boulder", "longitude"]
lat_end, lon_end = location_df.loc["boston", "latitude"], location_df.loc["boston", "longitude"]

intermediate_geodesic = interpolate_points_along_gc(lat_start,
                                          lon_start,
                                          lat_end,
                                          lon_end,
                                          midpoint)
print(f"{len(intermediate_geodesic)} Total Points")
print(intermediate_geodesic)
print(f"Midpoint = {intermediate_geodesic[1]}")
3 Total Points
[(np.float64(40.015), np.float64(-105.2705)), (42.48025434160511, -88.4793263654725), (np.float64(42.3601), np.float64(-71.0589))]
Midpoint = (42.48025434160511, -88.4793263654725)
distance_unit_sphere_default = distance_between_points_default("boulder", "boston")
intermediate_unit_sphere = calculate_intermediate_pts("boulder", "boston",
                                               1/2, distance_unit_sphere_default)
print(f"{len(intermediate_unit_sphere)} Total Points")
print(intermediate_unit_sphere)
print(f"Midpoint = {intermediate_unit_sphere[1]}")
3 Total Points
[(np.float64(40.015), np.float64(-105.2705)), (np.float64(42.475261312703864), np.float64(-88.48050569778584)), (np.float64(42.3601), np.float64(-71.0589))]
Midpoint = (np.float64(42.475261312703864), np.float64(-88.48050569778584))
# Compare geodesic and unit sphere
_, _, distance_m = geodesic.inv(intermediate_geodesic[1][0], intermediate_geodesic[1][1],
                                   intermediate_unit_sphere[1][0], intermediate_unit_sphere[1][1])
print(f"Distance between geodesic/unint sphere defined midpoint = {distance_m} meters")
Distance between geodesic/unint sphere defined midpoint = 132.55154860505925 meters

Generate a Great Circle Path

Generate points along a great circle path bewtween two points.

# Generate Latitude Coordinates based on Longitude Coordinates
def generate_latitude_along_gc(start_point=None, end_point=None, number_of_lon_pts=360):
    lat1 = np.deg2rad(location_df.loc[start_point, "latitude"])
    lon1 = np.deg2rad(location_df.loc[start_point, "longitude"])
    lat2 = np.deg2rad(location_df.loc[end_point, "latitude"])
    lon2 = np.deg2rad(location_df.loc[end_point, "longitude"])

    # Verify not meridian (longitude passes through the poles)
    if np.sin(lon1 - lon2) == 0:
        print("Invalid inputs: start/end points are meridians")
        # plotting meridians at 0 longitude through all latitudes
        meridian_lat = np.arange(-90, 90, 180/len(longitude_lst)) # split in n number
        meridians = []
        for lat in meridian_lat:
            meridians.append((lat, 0))
        return meridians

    # verify not anitpodal (diametrically opposite, points)
    if lat1 + lat2 == 0 and abs(lon1-lon2) == np.pi:
        print("Invalid inputs: start/end points are antipodal")
        return []

    # note: can be expanded to handle input of np arrays by filter out antipodal/merdiain points

    # generate n total number of longitude points along the great circle
    # https://github.com/rspatial/geosphere/blob/master/R/greatCircle.R#L18C3-L18C7
    gc_lon_lst = []
    for lon in range(1, number_of_lon_pts+1):
        new_lon = (lon  * (360/number_of_lon_pts) - 180)
        gc_lon_lst.append(np.deg2rad(new_lon))

    # Intermediate points on a great circle: https://edwilliams.org/avform147.htm"
    gc_lat_lon = []
    for gc_lon in gc_lon_lst:
        num = np.sin(lat1)*np.cos(lat2)*np.sin(gc_lon-lon2)-np.sin(lat2)*np.cos(lat1)*np.sin(gc_lon-lon1)
        den = np.cos(lat1)*np.cos(lat2)*np.sin(lon1-lon2)
        new_lat = np.arctan(num/den)
        gc_lat_lon.append((np.rad2deg(new_lat), np.rad2deg(gc_lon)))
    return gc_lat_lon
def arc_points(start_lat=None,
               start_lon=None,
               end_lat=None,
               end_lon=None,
               n_total_points=10):
    _, _, distance_meter =  geodesic.inv(start_lon,
                                        start_lat,
                                        end_lon,
                                        end_lat)
        
    distance_between_points_meter = distance_meter / (n_total_points + 1)

    
    points_along_arc = interpolate_points_along_gc(start_lat,
                                              start_lon,
                                              end_lat,
                                              end_lon,
                                              distance_between_points_meter)
    return points_along_arc
def plot_coordinate(lat_lon_lst=None,
                    start_point=None, end_point=None,
                    title=None):
    # Set up world map plot
    fig = plt.subplots(figsize=(15, 10))
    projection_map = ccrs.PlateCarree()
    ax = plt.axes(projection=projection_map)
    lon_west, lon_east, lat_south, lat_north = -180, 180, -90, 90
    ax.set_extent([lon_west, lon_east, lat_south, lat_north], crs=projection_map)
    ax.coastlines(color="black")
    ax.add_feature(cfeature.BORDERS, edgecolor='grey')
    ax.add_feature(cfeature.STATES, edgecolor="grey")
        
    # Plot Latitude/Longitude Location of great circle path
    longitudes = [x[1] for x in lat_lon_lst] # longitude
    latitudes = [x[0] for x in lat_lon_lst] # latitude
    plt.plot(longitudes, latitudes, c="cornflowerblue")
    plt.scatter(longitudes, latitudes, c="cornflowerblue")

    # Overly great circle with arc rom start/end point
    start_end_lat_lon = arc_points(location_df.loc[start_point, "latitude"],
                                   location_df.loc[start_point, "longitude"],
                                   location_df.loc[end_point, "latitude"],
                                   location_df.loc[end_point, "longitude"],
                                   n_total_points=20)
    longitudes = [x[1] for x in start_end_lat_lon] # longitude
    latitudes = [x[0] for x in start_end_lat_lon] # latitude
    plt.plot(longitudes, latitudes, c="red")
    plt.scatter(longitudes, latitudes, c="red")
    
    # Setup Axis Limits and Title/Labels
    plt.title(title)
    plt.show()
start_pt = "boulder"
end_pt = "boston"
n_pts = 360
lat_lon_pts = generate_latitude_along_gc(start_pt, end_pt, number_of_lon_pts=n_pts)
plot_coordinate(lat_lon_pts, start_pt, end_pt,
                f"Plot Great Circle, made from the arc {start_pt.title()} to {end_pt.title()}")
<Figure size 1500x1000 with 2 Axes>
start_pt = "arecibo"
end_pt = "greenwich"
n_pts = 360
lat_lon_pts = generate_latitude_along_gc(start_pt, end_pt, number_of_lon_pts=n_pts)
plot_coordinate(lat_lon_pts, start_pt, end_pt,
                f"Plot Great Circle, made from the arc {start_pt.title()} to {end_pt.title()}")
<Figure size 1500x1000 with 2 Axes>
start_pt = "zambezi"
end_pt = "svalbard"
n_pts = 360
lat_lon_pts = generate_latitude_along_gc(start_pt, end_pt, number_of_lon_pts=n_pts)
plot_coordinate(lat_lon_pts, start_pt, end_pt,
                f"Plot Great Circle, made from the arc {start_pt.title()} to {end_pt.title()}")
<Figure size 1500x1000 with 2 Axes>

Determine an Antipodal Point

Antipodal is the point on the globe that is on the exact opposite side of the Earth.

Antipodal latitude is defined as:

antipodal latitude=1latitude\text{antipodal latitude} = -1 * \text{latitude}

Antipodal longitude is defined as:

anitpodal longitude=(longitude+180) if longitude0\text{anitpodal longitude} = (\text{longitude} + 180) \text{ if longitude} \le 0
anitpodal longitude=(longitude180) if longitude>0\text{anitpodal longitude} = (\text{longitude} - 180) \text{ if longitude} \gt 0
def antipodal(start_point=None):
    anti_lat = -1 * location_df.loc[start_point, "latitude"]
    ref_lon = location_df.loc[start_point, "longitude"]
    if ref_lon > 0:
        anti_lon = ref_lon - 180
    else:
        anti_lon = ref_lon + 180
    #if anti_lon >= 180:
    #    anti_lon = -1 * (anti_lon % 180)
    return (anti_lat, anti_lon)
def is_antipodal(start_point=None, end_point=None):
    lon1 = np.deg2rad(location_df.loc[start_point, "longitude"])
    lat1 = np.deg2rad(location_df.loc[start_point, "latitude"])
    lon2 = np.deg2rad(location_df.loc[end_point, "longitude"])
    lat2 = np.deg2rad(location_df.loc[end_point, "latitude"])
    return lat1 + lat2 == 0 and abs(lon1-lon2) == np.pi
def plot_antipodal(start_point=None):
    # Set up world map plot
    fig = plt.subplots(figsize=(15, 10))
    projection_map = ccrs.PlateCarree()
    ax = plt.axes(projection=projection_map)
    lon_west, lon_east, lat_south, lat_north = -180, 180, -90, 90
    ax.set_extent([lon_west, lon_east, lat_south, lat_north], crs=projection_map)
    ax.coastlines(color="black")
    ax.add_feature(cfeature.BORDERS, edgecolor='grey')
    ax.add_feature(cfeature.STATES, edgecolor="grey")
        
    # Plot Start point
    plt.scatter(location_df.loc[start_point, "longitude"],
                location_df.loc[start_point, "latitude"],
                s=100, c="cornflowerblue", label=start_point.title())

    # Plot Antipodal Point
    antipodal_point = antipodal(start_point)
    plt.scatter(antipodal_point[1], antipodal_point[0], s=100, c="red", label="Antipodal")
    
    # Setup Axis Limits and Title/Labels
    plt.title(f"{start_point.title()} and Antipodal Point {antipodal_point}")
    plt.legend(loc="lower right")
    plt.show()
print(antipodal("boulder"))
plot_antipodal("boulder")
(np.float64(-40.015), np.float64(74.7295))
<Figure size 1500x1000 with 2 Axes>
print(antipodal("svalbard"))
plot_antipodal("svalbard")
(np.float64(-77.875), np.float64(-159.0248))
<Figure size 1500x1000 with 2 Axes>
print(antipodal("cairo"))
plot_antipodal("cairo")
(np.float64(-30.0444), np.float64(-148.7643))
<Figure size 1500x1000 with 2 Axes>

Summary

Calculating and mapping the midpoint and intermediate points along the great circle arc and closed circle path.

What’s next?

With a great circle arc defined, determine if a third point is along the arc or at what distance it sits from the great circle arc and path.

Resources and references