CMIP6 image CMIP6 image

Search and Load CMIP6 Data via ESGF/OPeNDAP


Overview

This notebook shows how to search and load data via Earth System Grid Federation infrastructure. This infrastructure works great and is the foundation of the CMIP6 distribution system.

The main technologies used here are the ESGF search API, used to figure out what data we want, and OPeNDAP, a remote data access protocol over HTTP.

Prerequisites

Concepts

Importance

Notes

Intro to Xarray

Necessary

Understanding of NetCDF

Helpful

Familiarity with metadata structure

  • Time to learn: 10 minutes


Imports

import warnings

from distributed import Client
import holoviews as hv
import hvplot.xarray
from matplotlib import pyplot as plt
import numpy as np
import pandas as pd
from pyesgf.search import SearchConnection
import xarray as xr

xr.set_options(display_style='html')
warnings.filterwarnings("ignore")
hv.extension('bokeh')
client = Client()
client

Client

Client-d6e5ce56-8ccb-11ef-8bdb-6045bdb5c525

Connection method: Cluster object Cluster type: distributed.LocalCluster
Dashboard: http://127.0.0.1:8787/status

Cluster Info

Search using ESGF API

Fortunately, there is an ESGF API implemented in Python - pyesgf, which requires three major steps:

  • Establish a search connection

  • Query your data

  • Extract the urls to your data

Once you have this information, you can load the data into an xarray.Dataset.

Configure the connection to a data server

First, we configure our connection to some server, using the distributed option (distrib=False). In this case, we are searching from the Lawerence Livermore National Lab (LLNL) data node.

conn = SearchConnection('https://esgf-node.llnl.gov/esg-search',
                        distrib=False)

Query our dataset

We are interested in a single experiment from CMIP6 - one of the Community Earth System Model version 2 (CESM2) runs, specifically the historical part of the simulation.

We are also interested in a single variable - temperature at the surface (tas), with a single ensemble member (r10i1p1f1)

ctx = conn.new_context(
    facets='project,experiment_id',
    project='CMIP6',
    table_id='Amon',
    institution_id="NCAR",
    experiment_id='historical',
    source_id='CESM2',
    variable='tas',
    variant_label='r10i1p1f1',
)

Extract the OpenDAP urls

In order to access the datasets, we need the urls to the data. Once we have these, we can read the data remotely!

result = ctx.search()[0]
files = result.file_context().search()
files
<pyesgf.search.results.ResultSet at 0x7f801b8d8ee0>

The files object is not immediately helpful - we need to extract the opendap_url method from this.

files[0].opendap_url
'http://aims3.llnl.gov/thredds/dodsC/css03_data/CMIP6/CMIP/NCAR/CESM2/historical/r10i1p1f1/Amon/tas/gn/v20190313/tas_Amon_CESM2_historical_r10i1p1f1_gn_185001-189912.nc'

We can use this for the whole list using list comprehension, as shown below.

opendap_urls = [file.opendap_url for file in files]
opendap_urls
['http://aims3.llnl.gov/thredds/dodsC/css03_data/CMIP6/CMIP/NCAR/CESM2/historical/r10i1p1f1/Amon/tas/gn/v20190313/tas_Amon_CESM2_historical_r10i1p1f1_gn_185001-189912.nc',
 'http://aims3.llnl.gov/thredds/dodsC/css03_data/CMIP6/CMIP/NCAR/CESM2/historical/r10i1p1f1/Amon/tas/gn/v20190313/tas_Amon_CESM2_historical_r10i1p1f1_gn_190001-194912.nc',
 'http://aims3.llnl.gov/thredds/dodsC/css03_data/CMIP6/CMIP/NCAR/CESM2/historical/r10i1p1f1/Amon/tas/gn/v20190313/tas_Amon_CESM2_historical_r10i1p1f1_gn_195001-199912.nc',
 'http://aims3.llnl.gov/thredds/dodsC/css03_data/CMIP6/CMIP/NCAR/CESM2/historical/r10i1p1f1/Amon/tas/gn/v20190313/tas_Amon_CESM2_historical_r10i1p1f1_gn_200001-201412.nc']

Read the data into an xarray.Dataset

Now that we have our urls to the data, we can use open multifile dataset (open_mfdataset) to read the data, combining the coordinates and chunking by time.

Xarray, together with the netCDF4 Python library, allow lazy loading.

ds = xr.open_mfdataset(opendap_urls,
                       combine='by_coords',
                       chunks={'time':480})
ds
<xarray.Dataset> Size: 453MB
Dimensions:    (time: 1980, nbnd: 2, lat: 192, lon: 288)
Coordinates:
  * lat        (lat) float64 2kB -90.0 -89.06 -88.12 -87.17 ... 88.12 89.06 90.0
  * lon        (lon) float64 2kB 0.0 1.25 2.5 3.75 ... 355.0 356.2 357.5 358.8
  * time       (time) object 16kB 1850-01-15 12:00:00 ... 2014-12-15 12:00:00
Dimensions without coordinates: nbnd
Data variables:
    time_bnds  (time, nbnd) object 32kB dask.array<chunksize=(480, 2), meta=np.ndarray>
    lat_bnds   (time, lat, nbnd) float64 6MB dask.array<chunksize=(600, 192, 2), meta=np.ndarray>
    lon_bnds   (time, lon, nbnd) float64 9MB dask.array<chunksize=(600, 288, 2), meta=np.ndarray>
    tas        (time, lat, lon) float32 438MB dask.array<chunksize=(480, 192, 288), meta=np.ndarray>
Attributes: (12/46)
    Conventions:                     CF-1.7 CMIP-6.2
    activity_id:                     CMIP
    branch_method:                   standard
    branch_time_in_child:            674885.0
    branch_time_in_parent:           306600.0
    case_id:                         24
    ...                              ...
    table_id:                        Amon
    tracking_id:                     hdl:21.14100/e47b79db-3925-45a7-9c0a-679...
    variable_id:                     tas
    variant_info:                    CMIP6 20th century experiments (1850-201...
    variant_label:                   r10i1p1f1
    DODS_EXTRA.Unlimited_Dimension:  time

Plot a quick look of the data

Now that we have the dataset, let’s plot a few quick looks of the data.

ds.tas.sel(time='1950-01').squeeze().plot(cmap='Spectral_r');
../../_images/3a894099832246a818b2b41e0a81bfc247bd3b3925b2814e8d6661239399c8a8.png

These are OPeNDAP endpoints. Xarray, together with the netCDF4 Python library, allow lazy loading.

Compute an area-weighted global average

Let’s apply some computation to this dataset. We would like to calculate the global average temperature. This requires weighting each of the grid cells properly, using the area.

Find the area of the cells

We can query the dataserver again, this time extracting the area of the cell (areacella).

ctx = conn.new_context(
    facets='project,experiment_id',
    project='CMIP6',
    institution_id="NCAR",
    experiment_id='historical',
    source_id='CESM2',
    variable='areacella',
)

As before, we extract the opendap urls.

result = ctx.search()[0]
files = result.file_context().search()
opendap_urls = [file.opendap_url for file in files]
opendap_urls
['http://aims3.llnl.gov/thredds/dodsC/css03_data/CMIP6/CMIP/NCAR/CESM2/historical/r11i1p1f1/fx/areacella/gn/v20190514/areacella_fx_CESM2_historical_r11i1p1f1_gn.nc']

And finally, we load our cell area file into an xarray.Dataset

ds_area = xr.open_dataset(opendap_urls[0])
ds_area
<xarray.Dataset> Size: 233kB
Dimensions:    (lat: 192, lon: 288, nbnd: 2)
Coordinates:
  * lat        (lat) float64 2kB -90.0 -89.06 -88.12 -87.17 ... 88.12 89.06 90.0
  * lon        (lon) float64 2kB 0.0 1.25 2.5 3.75 ... 355.0 356.2 357.5 358.8
Dimensions without coordinates: nbnd
Data variables:
    lat_bnds   (lat, nbnd) float64 3kB ...
    lon_bnds   (lon, nbnd) float64 5kB ...
    areacella  (lat, lon) float32 221kB ...
Attributes: (12/44)
    Conventions:            CF-1.7 CMIP-6.2
    activity_id:            CMIP
    branch_method:          standard
    branch_time_in_child:   674885.0
    branch_time_in_parent:  219000.0
    case_id:                972
    ...                     ...
    sub_experiment_id:      none
    table_id:               fx
    tracking_id:            hdl:21.14100/96455df2-979e-4cd4-8521-ddf307c6bc4a
    variable_id:            areacella
    variant_info:           CMIP6 20th century experiments (1850-2014) with C...
    variant_label:          r11i1p1f1

Compute the global average

Now that we have the area of each cell, and the temperature at each point, we can compute the global average temperature.

total_area = ds_area.areacella.sum(dim=['lon', 'lat'])
ta_timeseries = (ds.tas * ds_area.areacella).sum(dim=['lon', 'lat']) / total_area
ta_timeseries
<xarray.DataArray (time: 1980)> Size: 8kB
dask.array<truediv, shape=(1980,), dtype=float32, chunksize=(480,), chunktype=numpy.ndarray>
Coordinates:
  * time     (time) object 16kB 1850-01-15 12:00:00 ... 2014-12-15 12:00:00

By default the data are loaded lazily, as Dask arrays. Here we trigger computation explicitly.

%time ta_timeseries.load()
CPU times: user 409 ms, sys: 112 ms, total: 520 ms
Wall time: 10.9 s
<xarray.DataArray (time: 1980)> Size: 8kB
array([284.99948, 285.23215, 285.85364, ..., 288.54376, 287.61884,
       287.06284], dtype=float32)
Coordinates:
  * time     (time) object 16kB 1850-01-15 12:00:00 ... 2014-12-15 12:00:00

Visualize our results

Now that we have our results, we can visualize using static and dynamic plots. Let’s start with static plots using matplotlib, then dynamic plots using hvPlot.

ta_timeseries['time'] = ta_timeseries.indexes['time'].to_datetimeindex()
fig = plt.figure(figsize=(12,8))
ta_timeseries.plot(label='monthly')
ta_timeseries.rolling(time=12).mean().plot(label='12 month rolling mean')
plt.legend()
plt.title('Global Mean Surface Air Temperature')
Text(0.5, 1.0, 'Global Mean Surface Air Temperature')
../../_images/00d8245d1afe9a621b121e1d29d3c1adb83dc6d5ee79e0fd9c40b6030b3ffbc3.png
ta_timeseries.name = 'Temperature (K)'
monthly_average = ta_timeseries.hvplot(title = 'Global Mean Surface Air Temperature',
                                       label='monthly')
rolling_monthly_average = ta_timeseries.rolling(time=12).mean().hvplot(label='12 month rolling mean',)

(monthly_average * rolling_monthly_average).opts(legend_position='top_left')

Summary

In this notebook, we searched for and opened a CESM2 dataset using the ESGF API and OPeNDAP. We then plotted global average surface air temperature.

What’s next?

We will see some more advanced examples of using the CMIP6 data.

Resources and references