Surface temperature comparison
import act
import numpy as np
import xarray as xr
import pandas as pd
import matplotlib.pyplot as plt
from datetime import timedelta
import xwrf
import cmweather
import glob
from bokeh.models.formatters import DatetimeTickFormatter
import hvplot.xarray
import holoviews as hv
hv.extension("bokeh")
# Set your username and token here!
username = '---------'
token = '##########'
# Set the datastream and start/enddates
datastream_snow = 'gucmetM1.b1' # snow depth, also precipitation rate
# datastream_metprep = 'gucmetM1.b1' # surface temperature+precipitation
startdate1 = '2022-01-02'
enddate1 = '2022-01-07'
startdate2 = '2022-01-25'
enddate2 = '2022-01-30'
startdate3 = '2023-04-03'
enddate3 = '2023-04-08'
# wrf: snow depth()
# SNOWNC: ACCUMULATED TOTAL GRID SCALE SNOW AND ICE
# SNOWC: FLAG INDICATING SNOW COVERAGE (1 FOR SNOW COVER)
# Use ACT to easily download the data. Watch for the data citation! Show some support
# for ARM's instrument experts and cite their data if you use it in a publication
datasnow1 = act.discovery.download_arm_data(username, token, datastream_snow, startdate1, enddate1)
datasnow2 = act.discovery.download_arm_data(username, token, datastream_snow, startdate2, enddate2)
datasnow3 = act.discovery.download_arm_data(username, token, datastream_snow, startdate3, enddate3)
# datamet = act.discovery.download_arm_data(username, token, datastream_metprep, startdate, enddate)
[DOWNLOADING] gucmetM1.b1.20220105.000000.cdf
[DOWNLOADING] gucmetM1.b1.20220103.000000.cdf
[DOWNLOADING] gucmetM1.b1.20220104.000000.cdf
[DOWNLOADING] gucmetM1.b1.20220106.000000.cdf
[DOWNLOADING] gucmetM1.b1.20220102.000000.cdf
[DOWNLOADING] gucmetM1.b1.20220107.000000.cdf
If you use these data to prepare a publication, please cite:
Kyrouac, J., Shi, Y., & Tuftedal, M. Surface Meteorological Instrumentation
(MET). Atmospheric Radiation Measurement (ARM) User Facility.
https://doi.org/10.5439/1786358
[DOWNLOADING] gucmetM1.b1.20220126.000000.cdf
[DOWNLOADING] gucmetM1.b1.20220127.000000.cdf
[DOWNLOADING] gucmetM1.b1.20220128.000000.cdf
[DOWNLOADING] gucmetM1.b1.20220129.000000.cdf
[DOWNLOADING] gucmetM1.b1.20220125.000000.cdf
[DOWNLOADING] gucmetM1.b1.20220130.000000.cdf
If you use these data to prepare a publication, please cite:
Kyrouac, J., Shi, Y., & Tuftedal, M. Surface Meteorological Instrumentation
(MET). Atmospheric Radiation Measurement (ARM) User Facility.
https://doi.org/10.5439/1786358
[DOWNLOADING] gucmetM1.b1.20230405.000000.cdf
[DOWNLOADING] gucmetM1.b1.20230407.000000.cdf
[DOWNLOADING] gucmetM1.b1.20230406.000000.cdf
[DOWNLOADING] gucmetM1.b1.20230403.000000.cdf
[DOWNLOADING] gucmetM1.b1.20230404.000000.cdf
[DOWNLOADING] gucmetM1.b1.20230408.000000.cdf
If you use these data to prepare a publication, please cite:
Kyrouac, J., Shi, Y., & Tuftedal, M. Surface Meteorological Instrumentation
(MET). Atmospheric Radiation Measurement (ARM) User Facility.
https://doi.org/10.5439/1786358
# Let's read in the data using ACT and check out the data
ds_snow1 = act.io.read_arm_netcdf(datasnow1) # 1-min
ds_snow2 = act.io.read_arm_netcdf(datasnow2) # 1-min
ds_snow3 = act.io.read_arm_netcdf(datasnow3) # 1-min
ds_snow1
<xarray.Dataset> Size: 2MB Dimensions: (time: 8640, bound: 2) Coordinates: * time (time) datetime64[ns] 69kB 2022-01-02 ... 2... Dimensions without coordinates: bound Data variables: (12/51) base_time (time) datetime64[ns] 69kB 2022-01-02 ... 2... time_offset (time) datetime64[ns] 69kB 2022-01-02 ... 2... time_bounds (time, bound) object 138kB dask.array<chunksize=(1440, 2), meta=np.ndarray> atmos_pressure (time) float32 35kB dask.array<chunksize=(1440,), meta=np.ndarray> qc_atmos_pressure (time) int32 35kB dask.array<chunksize=(1440,), meta=np.ndarray> temp_mean (time) float32 35kB dask.array<chunksize=(1440,), meta=np.ndarray> ... ... qc_logger_volt (time) int32 35kB dask.array<chunksize=(1440,), meta=np.ndarray> logger_temp (time) float32 35kB dask.array<chunksize=(1440,), meta=np.ndarray> qc_logger_temp (time) int32 35kB dask.array<chunksize=(1440,), meta=np.ndarray> lat (time) float32 35kB 38.96 38.96 ... 38.96 lon (time) float32 35kB -107.0 -107.0 ... -107.0 alt (time) float32 35kB 2.886e+03 ... 2.886e+03 Attributes: (12/25) command_line: met_ingest -s guc -f M1 -RD --max-runtime 0 Conventions: ARM-1.3 process_version: ingest-met-4.53-0.el7 dod_version: met-b1-11.2 input_source: /data/reproc/D221103.2/collection/guc/gucmet... site_id: guc ... ... tbrg_precip_corr_info: 0.000000 * tbrg_precip_total^2 + 0.000000 * ... history: created by user yahmad on machine prod-proc5... _file_dates: ['20220102', '20220103', '20220104', '202201... _file_times: ['000000', '000000', '000000', '000000', '00... _datastream: gucmetM1.b1 _arm_standards_flag: 1
xarray.Dataset
- time: 8640
- bound: 2
- time(time)datetime64[ns]2022-01-02 ... 2022-01-07T23:59:00
- long_name :
- Time offset from midnight
- bounds :
- time_bounds
- standard_name :
- time
array(['2022-01-02T00:00:00.000000000', '2022-01-02T00:01:00.000000000', '2022-01-02T00:02:00.000000000', ..., '2022-01-07T23:57:00.000000000', '2022-01-07T23:58:00.000000000', '2022-01-07T23:59:00.000000000'], dtype='datetime64[ns]')
- base_time(time)datetime64[ns]2022-01-02 ... 2022-01-07
- string :
- 2022-01-02 00:00:00 0:00
- long_name :
- Base time in Epoch
- ancillary_variables :
- time_offset
array(['2022-01-02T00:00:00.000000000', '2022-01-02T00:00:00.000000000', '2022-01-02T00:00:00.000000000', ..., '2022-01-07T00:00:00.000000000', '2022-01-07T00:00:00.000000000', '2022-01-07T00:00:00.000000000'], dtype='datetime64[ns]')
- time_offset(time)datetime64[ns]2022-01-02 ... 2022-01-07T23:59:00
- long_name :
- Time offset from base_time
- ancillary_variables :
- base_time
array(['2022-01-02T00:00:00.000000000', '2022-01-02T00:01:00.000000000', '2022-01-02T00:02:00.000000000', ..., '2022-01-07T23:57:00.000000000', '2022-01-07T23:58:00.000000000', '2022-01-07T23:59:00.000000000'], dtype='datetime64[ns]')
- time_bounds(time, bound)objectdask.array<chunksize=(1440, 2), meta=np.ndarray>
- long_name :
- Time cell bounds
- bound_offsets :
- [-60. 0.]
Array Chunk Bytes 135.00 kiB 22.50 kiB Shape (8640, 2) (1440, 2) Dask graph 6 chunks in 13 graph layers Data type object numpy.ndarray - atmos_pressure(time)float32dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- Atmospheric pressure
- units :
- kPa
- valid_min :
- 60.0
- valid_max :
- 110.0
- valid_delta :
- 1.0
- ancillary_variables :
- qc_atmos_pressure
- standard_name :
- surface_air_pressure
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type float32 numpy.ndarray - qc_atmos_pressure(time)int32dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- Quality check results on variable: Atmospheric pressure
- units :
- 1
- standard_name :
- quality_flag
- description :
- This variable contains bit-packed integer values, where each bit represents a QC test on the data. Non-zero bits indicate the QC condition given in the description for those bits; a value of 0 (no bits set) indicates the data has not failed any QC tests.
- flag_method :
- bit
- bit_1_description :
- Value is equal to missing_value.
- bit_1_assessment :
- Bad
- bit_2_description :
- Value is less than valid_min.
- bit_2_assessment :
- Bad
- bit_3_description :
- Value is greater than valid_max.
- bit_3_assessment :
- Bad
- bit_4_description :
- Difference between current and previous values exceeds valid_delta.
- bit_4_assessment :
- Indeterminate
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type int32 numpy.ndarray - temp_mean(time)float32dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- Temperature mean
- units :
- degC
- valid_min :
- -40.0
- valid_max :
- 50.0
- valid_delta :
- 20.0
- ancillary_variables :
- qc_temp_mean
- standard_name :
- air_temperature
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type float32 numpy.ndarray - qc_temp_mean(time)int32dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- Quality check results on variable: Temperature mean
- units :
- 1
- standard_name :
- quality_flag
- description :
- This variable contains bit-packed integer values, where each bit represents a QC test on the data. Non-zero bits indicate the QC condition given in the description for those bits; a value of 0 (no bits set) indicates the data has not failed any QC tests.
- flag_method :
- bit
- bit_1_description :
- Value is equal to missing_value.
- bit_1_assessment :
- Bad
- bit_2_description :
- Value is less than valid_min.
- bit_2_assessment :
- Bad
- bit_3_description :
- Value is greater than valid_max.
- bit_3_assessment :
- Bad
- bit_4_description :
- Difference between current and previous values exceeds valid_delta.
- bit_4_assessment :
- Indeterminate
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type int32 numpy.ndarray - temp_std(time)float32dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- Temperature standard deviation
- units :
- degC
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type float32 numpy.ndarray - rh_mean(time)float32dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- Relative humidity mean
- units :
- %
- valid_min :
- 0.0
- valid_max :
- 104.0
- valid_delta :
- 30.0
- ancillary_variables :
- qc_rh_mean
- standard_name :
- relative_humidity
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type float32 numpy.ndarray - qc_rh_mean(time)int32dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- Quality check results on variable: Relative humidity mean
- units :
- 1
- standard_name :
- quality_flag
- description :
- This variable contains bit-packed integer values, where each bit represents a QC test on the data. Non-zero bits indicate the QC condition given in the description for those bits; a value of 0 (no bits set) indicates the data has not failed any QC tests.
- flag_method :
- bit
- bit_1_description :
- Value is equal to missing_value.
- bit_1_assessment :
- Bad
- bit_2_description :
- Value is less than valid_min.
- bit_2_assessment :
- Bad
- bit_3_description :
- Value is greater than valid_max.
- bit_3_assessment :
- Bad
- bit_4_description :
- Difference between current and previous values exceeds valid_delta.
- bit_4_assessment :
- Indeterminate
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type int32 numpy.ndarray - rh_std(time)float32dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- Relative humidity standard deviation
- units :
- %
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type float32 numpy.ndarray - vapor_pressure_mean(time)float32dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- Vapor pressure mean, calculated
- units :
- kPa
- valid_min :
- 0.0
- valid_max :
- 10.0
- valid_delta :
- 1.0
- ancillary_variables :
- qc_vapor_pressure_mean
- standard_name :
- water_vapor_partial_pressure_in_air
- comment :
- The calculation is done with respect to ice or water, depending on the measured temperature being below or above 0 degC, respectively
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type float32 numpy.ndarray - qc_vapor_pressure_mean(time)int32dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- Quality check results on variable: Vapor pressure mean, calculated
- units :
- 1
- standard_name :
- quality_flag
- description :
- This variable contains bit-packed integer values, where each bit represents a QC test on the data. Non-zero bits indicate the QC condition given in the description for those bits; a value of 0 (no bits set) indicates the data has not failed any QC tests.
- flag_method :
- bit
- bit_1_description :
- Value is equal to missing_value.
- bit_1_assessment :
- Bad
- bit_2_description :
- Value is less than valid_min.
- bit_2_assessment :
- Bad
- bit_3_description :
- Value is greater than valid_max.
- bit_3_assessment :
- Bad
- bit_4_description :
- Difference between current and previous values exceeds valid_delta.
- bit_4_assessment :
- Indeterminate
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type int32 numpy.ndarray - vapor_pressure_std(time)float32dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- Vapor pressure standard deviation
- units :
- kPa
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type float32 numpy.ndarray - wspd_arith_mean(time)float32dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- Wind speed arithmetic mean
- units :
- m/s
- valid_min :
- 0.0
- valid_max :
- 60.0
- valid_delta :
- 20.0
- ancillary_variables :
- qc_wspd_arith_mean
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type float32 numpy.ndarray - qc_wspd_arith_mean(time)int32dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- Quality check results on variable: Wind speed arithmetic mean
- units :
- 1
- standard_name :
- quality_flag
- description :
- This variable contains bit-packed integer values, where each bit represents a QC test on the data. Non-zero bits indicate the QC condition given in the description for those bits; a value of 0 (no bits set) indicates the data has not failed any QC tests.
- flag_method :
- bit
- bit_1_description :
- Value is equal to missing_value.
- bit_1_assessment :
- Bad
- bit_2_description :
- Value is less than valid_min.
- bit_2_assessment :
- Bad
- bit_3_description :
- Value is greater than valid_max.
- bit_3_assessment :
- Bad
- bit_4_description :
- Difference between current and previous values exceeds valid_delta.
- bit_4_assessment :
- Indeterminate
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type int32 numpy.ndarray - wspd_vec_mean(time)float32dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- Wind speed vector mean
- units :
- m/s
- valid_min :
- 0.0
- valid_max :
- 60.0
- valid_delta :
- 20.0
- ancillary_variables :
- qc_wspd_vec_mean
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type float32 numpy.ndarray - qc_wspd_vec_mean(time)int32dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- Quality check results on variable: Wind speed vector mean
- units :
- 1
- standard_name :
- quality_flag
- description :
- This variable contains bit-packed integer values, where each bit represents a QC test on the data. Non-zero bits indicate the QC condition given in the description for those bits; a value of 0 (no bits set) indicates the data has not failed any QC tests.
- flag_method :
- bit
- bit_1_description :
- Value is equal to missing_value.
- bit_1_assessment :
- Bad
- bit_2_description :
- Value is less than valid_min.
- bit_2_assessment :
- Bad
- bit_3_description :
- Value is greater than valid_max.
- bit_3_assessment :
- Bad
- bit_4_description :
- Difference between current and previous values exceeds valid_delta.
- bit_4_assessment :
- Indeterminate
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type int32 numpy.ndarray - wdir_vec_mean(time)float32dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- Wind direction vector mean
- units :
- degree
- valid_min :
- 0.0
- valid_max :
- 360.0
- ancillary_variables :
- qc_wdir_vec_mean
- standard_name :
- wind_from_direction
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type float32 numpy.ndarray - qc_wdir_vec_mean(time)int32dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- Quality check results on variable: Wind direction vector mean
- units :
- 1
- standard_name :
- quality_flag
- description :
- This variable contains bit-packed integer values, where each bit represents a QC test on the data. Non-zero bits indicate the QC condition given in the description for those bits; a value of 0 (no bits set) indicates the data has not failed any QC tests.
- flag_method :
- bit
- bit_1_description :
- Value is equal to missing_value.
- bit_1_assessment :
- Bad
- bit_2_description :
- Value is less than valid_min.
- bit_2_assessment :
- Bad
- bit_3_description :
- Value is greater than valid_max.
- bit_3_assessment :
- Bad
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type int32 numpy.ndarray - wdir_vec_std(time)float32dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- Wind direction vector mean standard deviation
- units :
- degree
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type float32 numpy.ndarray - pwd_err_code(time)float64dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- PWD alarm
- units :
- 1
Array Chunk Bytes 67.50 kiB 11.25 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type float64 numpy.ndarray - pwd_mean_vis_1min(time)float64dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- PWD 1 minute mean visibility
- units :
- m
- valid_min :
- 0
- valid_max :
- 20000
- ancillary_variables :
- qc_pwd_mean_vis_1min
- standard_name :
- visibility_in_air
Array Chunk Bytes 67.50 kiB 11.25 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type float64 numpy.ndarray - qc_pwd_mean_vis_1min(time)int32dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- Quality check results on variable: PWD 1 minute mean visibility
- units :
- 1
- standard_name :
- quality_flag
- description :
- This variable contains bit-packed integer values, where each bit represents a QC test on the data. Non-zero bits indicate the QC condition given in the description for those bits; a value of 0 (no bits set) indicates the data has not failed any QC tests.
- flag_method :
- bit
- bit_1_description :
- Value is equal to missing_value.
- bit_1_assessment :
- Bad
- bit_2_description :
- Value is less than valid_min.
- bit_2_assessment :
- Bad
- bit_3_description :
- Value is greater than valid_max.
- bit_3_assessment :
- Bad
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type int32 numpy.ndarray - pwd_mean_vis_10min(time)float64dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- PWD 10 minute mean visibility
- units :
- m
- valid_min :
- 0
- valid_max :
- 20000
- ancillary_variables :
- qc_pwd_mean_vis_10min
- standard_name :
- visibility_in_air
Array Chunk Bytes 67.50 kiB 11.25 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type float64 numpy.ndarray - qc_pwd_mean_vis_10min(time)int32dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- Quality check results on variable: PWD 10 minute mean visibility
- units :
- 1
- standard_name :
- quality_flag
- description :
- This variable contains bit-packed integer values, where each bit represents a QC test on the data. Non-zero bits indicate the QC condition given in the description for those bits; a value of 0 (no bits set) indicates the data has not failed any QC tests.
- flag_method :
- bit
- bit_1_description :
- Value is equal to missing_value.
- bit_1_assessment :
- Bad
- bit_2_description :
- Value is less than valid_min.
- bit_2_assessment :
- Bad
- bit_3_description :
- Value is greater than valid_max.
- bit_3_assessment :
- Bad
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type int32 numpy.ndarray - pwd_pw_code_inst(time)float64dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- PWD instantaneous present weather code
- units :
- 1
- valid_min :
- 0
- valid_max :
- 99
- ancillary_variables :
- qc_pwd_pw_code_inst
Array Chunk Bytes 67.50 kiB 11.25 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type float64 numpy.ndarray - qc_pwd_pw_code_inst(time)int32dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- Quality check results on variable: PWD instantaneous present weather code
- units :
- 1
- standard_name :
- quality_flag
- description :
- This variable contains bit-packed integer values, where each bit represents a QC test on the data. Non-zero bits indicate the QC condition given in the description for those bits; a value of 0 (no bits set) indicates the data has not failed any QC tests.
- flag_method :
- bit
- bit_1_description :
- Value is equal to missing_value.
- bit_1_assessment :
- Bad
- bit_2_description :
- Value is less than valid_min.
- bit_2_assessment :
- Bad
- bit_3_description :
- Value is greater than valid_max.
- bit_3_assessment :
- Bad
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type int32 numpy.ndarray - pwd_pw_code_15min(time)float64dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- PWD 15 minute present weather code
- units :
- 1
- valid_min :
- 0
- valid_max :
- 99
- ancillary_variables :
- qc_pwd_pw_code_15min
Array Chunk Bytes 67.50 kiB 11.25 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type float64 numpy.ndarray - qc_pwd_pw_code_15min(time)int32dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- Quality check results on variable: PWD 15 minute present weather code
- units :
- 1
- standard_name :
- quality_flag
- description :
- This variable contains bit-packed integer values, where each bit represents a QC test on the data. Non-zero bits indicate the QC condition given in the description for those bits; a value of 0 (no bits set) indicates the data has not failed any QC tests.
- flag_method :
- bit
- bit_1_description :
- Value is equal to missing_value.
- bit_1_assessment :
- Bad
- bit_2_description :
- Value is less than valid_min.
- bit_2_assessment :
- Bad
- bit_3_description :
- Value is greater than valid_max.
- bit_3_assessment :
- Bad
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type int32 numpy.ndarray - pwd_pw_code_1hr(time)float64dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- PWD 1 hour present weather code
- units :
- 1
- valid_min :
- 0
- valid_max :
- 99
- ancillary_variables :
- qc_pwd_pw_code_1hr
Array Chunk Bytes 67.50 kiB 11.25 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type float64 numpy.ndarray - qc_pwd_pw_code_1hr(time)int32dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- Quality check results on variable: PWD 1 hour present weather code
- units :
- 1
- standard_name :
- quality_flag
- description :
- This variable contains bit-packed integer values, where each bit represents a QC test on the data. Non-zero bits indicate the QC condition given in the description for those bits; a value of 0 (no bits set) indicates the data has not failed any QC tests.
- flag_method :
- bit
- bit_1_description :
- Value is equal to missing_value.
- bit_1_assessment :
- Bad
- bit_2_description :
- Value is less than valid_min.
- bit_2_assessment :
- Bad
- bit_3_description :
- Value is greater than valid_max.
- bit_3_assessment :
- Bad
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type int32 numpy.ndarray - pwd_precip_rate_mean_1min(time)float32dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- PWD 1 minute mean precipitation rate
- units :
- mm/hr
- valid_min :
- 0.0
- valid_max :
- 999.99
- valid_delta :
- 100.0
- ancillary_variables :
- qc_pwd_precip_rate_mean_1min
- standard_name :
- lwe_precipitation_rate
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type float32 numpy.ndarray - qc_pwd_precip_rate_mean_1min(time)int32dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- Quality check results on variable: PWD 1 minute mean precipitation rate
- units :
- 1
- standard_name :
- quality_flag
- description :
- This variable contains bit-packed integer values, where each bit represents a QC test on the data. Non-zero bits indicate the QC condition given in the description for those bits; a value of 0 (no bits set) indicates the data has not failed any QC tests.
- flag_method :
- bit
- bit_1_description :
- Value is equal to missing_value.
- bit_1_assessment :
- Bad
- bit_2_description :
- Value is less than valid_min.
- bit_2_assessment :
- Bad
- bit_3_description :
- Value is greater than valid_max.
- bit_3_assessment :
- Bad
- bit_4_description :
- Difference between current and previous values exceeds valid_delta.
- bit_4_assessment :
- Indeterminate
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type int32 numpy.ndarray - pwd_cumul_rain(time)float32dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- PWD cumulative liquid precipitation
- units :
- mm
- valid_min :
- 0.0
- valid_max :
- 99.99
- valid_delta :
- 50.0
- ancillary_variables :
- qc_pwd_cumul_rain
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type float32 numpy.ndarray - qc_pwd_cumul_rain(time)int32dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- Quality check results on variable: PWD cumulative liquid precipitation
- units :
- 1
- standard_name :
- quality_flag
- description :
- This variable contains bit-packed integer values, where each bit represents a QC test on the data. Non-zero bits indicate the QC condition given in the description for those bits; a value of 0 (no bits set) indicates the data has not failed any QC tests.
- flag_method :
- bit
- bit_1_description :
- Value is equal to missing_value.
- bit_1_assessment :
- Bad
- bit_2_description :
- Value is less than valid_min.
- bit_2_assessment :
- Bad
- bit_3_description :
- Value is greater than valid_max.
- bit_3_assessment :
- Bad
- bit_4_description :
- Difference between current and previous values exceeds valid_delta.
- bit_4_assessment :
- Indeterminate
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type int32 numpy.ndarray - pwd_cumul_snow(time)float32dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- PWD cumulative snow
- units :
- mm
- valid_min :
- 0.0
- valid_max :
- 999.0
- valid_delta :
- 100.0
- ancillary_variables :
- qc_pwd_cumul_snow
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type float32 numpy.ndarray - qc_pwd_cumul_snow(time)int32dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- Quality check results on variable: PWD cumulative snow
- units :
- 1
- standard_name :
- quality_flag
- description :
- This variable contains bit-packed integer values, where each bit represents a QC test on the data. Non-zero bits indicate the QC condition given in the description for those bits; a value of 0 (no bits set) indicates the data has not failed any QC tests.
- flag_method :
- bit
- bit_1_description :
- Value is equal to missing_value.
- bit_1_assessment :
- Bad
- bit_2_description :
- Value is less than valid_min.
- bit_2_assessment :
- Bad
- bit_3_description :
- Value is greater than valid_max.
- bit_3_assessment :
- Bad
- bit_4_description :
- Difference between current and previous values exceeds valid_delta.
- bit_4_assessment :
- Indeterminate
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type int32 numpy.ndarray - org_precip_rate_mean(time)float32dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- ORG precipitation rate mean
- units :
- mm/hr
- valid_min :
- 0.0
- valid_max :
- 500.0
- ancillary_variables :
- qc_org_precip_rate_mean
- standard_name :
- lwe_precipitation_rate
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type float32 numpy.ndarray - qc_org_precip_rate_mean(time)int32dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- Quality check results on variable: ORG precipitation rate mean
- units :
- 1
- standard_name :
- quality_flag
- description :
- This variable contains bit-packed integer values, where each bit represents a QC test on the data. Non-zero bits indicate the QC condition given in the description for those bits; a value of 0 (no bits set) indicates the data has not failed any QC tests.
- flag_method :
- bit
- bit_1_description :
- Value is equal to missing_value.
- bit_1_assessment :
- Bad
- bit_2_description :
- Value is less than valid_min.
- bit_2_assessment :
- Bad
- bit_3_description :
- Value is greater than valid_max.
- bit_3_assessment :
- Bad
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type int32 numpy.ndarray - tbrg_precip_total(time)float32dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- TBRG precipitation total
- units :
- mm
- valid_min :
- 0.0
- valid_max :
- 10.0
- ancillary_variables :
- qc_tbrg_precip_total
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type float32 numpy.ndarray - qc_tbrg_precip_total(time)int32dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- Quality check results on variable: TBRG precipitation total
- units :
- 1
- standard_name :
- quality_flag
- description :
- This variable contains bit-packed integer values, where each bit represents a QC test on the data. Non-zero bits indicate the QC condition given in the description for those bits; a value of 0 (no bits set) indicates the data has not failed any QC tests.
- flag_method :
- bit
- bit_1_description :
- Value is equal to missing_value.
- bit_1_assessment :
- Bad
- bit_2_description :
- Value is less than valid_min.
- bit_2_assessment :
- Bad
- bit_3_description :
- Value is greater than valid_max.
- bit_3_assessment :
- Bad
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type int32 numpy.ndarray - tbrg_precip_total_corr(time)float32dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- TBRG precipitation total, corrected
- units :
- mm
- valid_min :
- 0.0
- valid_max :
- 10.0
- ancillary_variables :
- qc_tbrg_precip_total_corr
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type float32 numpy.ndarray - qc_tbrg_precip_total_corr(time)int32dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- Quality check results on variable: TBRG precipitation total, corrected
- units :
- 1
- standard_name :
- quality_flag
- description :
- This variable contains bit-packed integer values, where each bit represents a QC test on the data. Non-zero bits indicate the QC condition given in the description for those bits; a value of 0 (no bits set) indicates the data has not failed any QC tests.
- flag_method :
- bit
- bit_1_description :
- Value is equal to missing_value.
- bit_1_assessment :
- Bad
- bit_2_description :
- Value is less than valid_min.
- bit_2_assessment :
- Bad
- bit_3_description :
- Value is greater than valid_max.
- bit_3_assessment :
- Bad
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type int32 numpy.ndarray - logger_volt(time)float32dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- Logger voltage
- units :
- V
- valid_min :
- 10.0
- valid_max :
- 15.0
- valid_delta :
- 5.0
- ancillary_variables :
- qc_logger_volt
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type float32 numpy.ndarray - qc_logger_volt(time)int32dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- Quality check results on variable: Logger voltage
- units :
- 1
- standard_name :
- quality_flag
- description :
- This variable contains bit-packed integer values, where each bit represents a QC test on the data. Non-zero bits indicate the QC condition given in the description for those bits; a value of 0 (no bits set) indicates the data has not failed any QC tests.
- flag_method :
- bit
- bit_1_description :
- Value is equal to missing_value.
- bit_1_assessment :
- Bad
- bit_2_description :
- Value is less than valid_min.
- bit_2_assessment :
- Bad
- bit_3_description :
- Value is greater than valid_max.
- bit_3_assessment :
- Bad
- bit_4_description :
- Difference between current and previous values exceeds valid_delta.
- bit_4_assessment :
- Indeterminate
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type int32 numpy.ndarray - logger_temp(time)float32dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- Logger temperature
- units :
- degC
- valid_min :
- -25.0
- valid_max :
- 50.0
- valid_delta :
- 10.0
- ancillary_variables :
- qc_logger_temp
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type float32 numpy.ndarray - qc_logger_temp(time)int32dask.array<chunksize=(1440,), meta=np.ndarray>
- long_name :
- Quality check results on variable: Logger temperature
- units :
- 1
- standard_name :
- quality_flag
- description :
- This variable contains bit-packed integer values, where each bit represents a QC test on the data. Non-zero bits indicate the QC condition given in the description for those bits; a value of 0 (no bits set) indicates the data has not failed any QC tests.
- flag_method :
- bit
- bit_1_description :
- Value is equal to missing_value.
- bit_1_assessment :
- Bad
- bit_2_description :
- Value is less than valid_min.
- bit_2_assessment :
- Bad
- bit_3_description :
- Value is greater than valid_max.
- bit_3_assessment :
- Bad
- bit_4_description :
- Difference between current and previous values exceeds valid_delta.
- bit_4_assessment :
- Indeterminate
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 13 graph layers Data type int32 numpy.ndarray - lat(time)float3238.96 38.96 38.96 ... 38.96 38.96
- long_name :
- North latitude
- units :
- degree_N
- valid_min :
- -90.0
- valid_max :
- 90.0
- standard_name :
- latitude
array([38.956158, 38.956158, 38.956158, ..., 38.956158, 38.956158, 38.956158], dtype=float32)
- lon(time)float32-107.0 -107.0 ... -107.0 -107.0
- long_name :
- East longitude
- units :
- degree_E
- valid_min :
- -180.0
- valid_max :
- 180.0
- standard_name :
- longitude
array([-106.987854, -106.987854, -106.987854, ..., -106.987854, -106.987854, -106.987854], dtype=float32)
- alt(time)float322.886e+03 2.886e+03 ... 2.886e+03
- long_name :
- Altitude above mean sea level
- units :
- m
- standard_name :
- altitude
array([2886., 2886., 2886., ..., 2886., 2886., 2886.], dtype=float32)
- timePandasIndex
PandasIndex(DatetimeIndex(['2022-01-02 00:00:00', '2022-01-02 00:01:00', '2022-01-02 00:02:00', '2022-01-02 00:03:00', '2022-01-02 00:04:00', '2022-01-02 00:05:00', '2022-01-02 00:06:00', '2022-01-02 00:07:00', '2022-01-02 00:08:00', '2022-01-02 00:09:00', ... '2022-01-07 23:50:00', '2022-01-07 23:51:00', '2022-01-07 23:52:00', '2022-01-07 23:53:00', '2022-01-07 23:54:00', '2022-01-07 23:55:00', '2022-01-07 23:56:00', '2022-01-07 23:57:00', '2022-01-07 23:58:00', '2022-01-07 23:59:00'], dtype='datetime64[ns]', name='time', length=8640, freq=None))
- command_line :
- met_ingest -s guc -f M1 -RD --max-runtime 0
- Conventions :
- ARM-1.3
- process_version :
- ingest-met-4.53-0.el7
- dod_version :
- met-b1-11.2
- input_source :
- /data/reproc/D221103.2/collection/guc/gucmetM1.00/MET_Table1.20220102000000.dat
- site_id :
- guc
- platform_id :
- met
- facility_id :
- M1
- data_level :
- b1
- location_description :
- Surface Atmosphere Integrated Field Laboratory (SAIL), Mt Crested Butte, Colorado
- datastream :
- gucmetM1.b1
- serial_number :
- 0
- sampling_interval :
- variable, see instrument handbook
- averaging_interval :
- 60 seconds
- doi :
- 10.5439/1786358
- averaging_interval_comment :
- The time assigned to each data point indicates the end of the averaging interval.
- org :
- Optical Rain Gauge
- tbrg :
- Tipping Bucket Rain Gauge
- pwd :
- Present Weather Detector
- tbrg_precip_corr_info :
- 0.000000 * tbrg_precip_total^2 + 0.000000 * tbrg_precip_total
- history :
- created by user yahmad on machine prod-proc5.adc.arm.gov at 2023-11-16 19:52:14, using ingest-met-4.53-0.el7
- _file_dates :
- ['20220102', '20220103', '20220104', '20220105', '20220106', '20220107']
- _file_times :
- ['000000', '000000', '000000', '000000', '000000', '000000']
- _datastream :
- gucmetM1.b1
- _arm_standards_flag :
- 1
ds_snow1["temp_mean"] = ds_snow1["temp_mean"] + 273.15
ds_snow2["temp_mean"] = ds_snow2["temp_mean"] + 273.15
ds_snow3["temp_mean"] = ds_snow3["temp_mean"] + 273.15
ds_snow1["temp_mean"]
<xarray.DataArray 'temp_mean' (time: 8640)> Size: 35kB dask.array<add, shape=(8640,), dtype=float32, chunksize=(1440,), chunktype=numpy.ndarray> Coordinates: * time (time) datetime64[ns] 69kB 2022-01-02 ... 2022-01-07T23:59:00
xarray.DataArray
'temp_mean'
- time: 8640
- dask.array<chunksize=(1440,), meta=np.ndarray>
Array Chunk Bytes 33.75 kiB 5.62 kiB Shape (8640,) (1440,) Dask graph 6 chunks in 14 graph layers Data type float32 numpy.ndarray - time(time)datetime64[ns]2022-01-02 ... 2022-01-07T23:59:00
- long_name :
- Time offset from midnight
- bounds :
- time_bounds
- standard_name :
- time
array(['2022-01-02T00:00:00.000000000', '2022-01-02T00:01:00.000000000', '2022-01-02T00:02:00.000000000', ..., '2022-01-07T23:57:00.000000000', '2022-01-07T23:58:00.000000000', '2022-01-07T23:59:00.000000000'], dtype='datetime64[ns]')
- timePandasIndex
PandasIndex(DatetimeIndex(['2022-01-02 00:00:00', '2022-01-02 00:01:00', '2022-01-02 00:02:00', '2022-01-02 00:03:00', '2022-01-02 00:04:00', '2022-01-02 00:05:00', '2022-01-02 00:06:00', '2022-01-02 00:07:00', '2022-01-02 00:08:00', '2022-01-02 00:09:00', ... '2022-01-07 23:50:00', '2022-01-07 23:51:00', '2022-01-07 23:52:00', '2022-01-07 23:53:00', '2022-01-07 23:54:00', '2022-01-07 23:55:00', '2022-01-07 23:56:00', '2022-01-07 23:57:00', '2022-01-07 23:58:00', '2022-01-07 23:59:00'], dtype='datetime64[ns]', name='time', length=8640, freq=None))
variable_snow = "tbrg_precip_total_corr"
variable_temp = "temp_mean"
# Jan 2-7 2022
# Create a plotting display object with 2 plots
display = act.plotting.TimeSeriesDisplay(ds_snow1,subplot_shape=(2,), figsize=(15,10))
# Plot up the variable in the first plot - Surface precipitation corrected (tbrg_precip_total_corr)
display.plot(variable_snow, subplot_index=(0,),day_night_background=True,
set_title="Control case: Total precipitation")
# display.day_night_background(subplot_index=(0,))
# Plot up the variable in the second plot - Temperature: temp_mean
display.plot(variable_temp, subplot_index=(1,),day_night_background=True,
set_title="Control case: Surface Temperature")
# display.day_night_background(subplot_index=(1,))
plt.ylabel('(K)')
plt.show()

# Jan 25-30 2022
# Create a plotting display object with 2 plots
display = act.plotting.TimeSeriesDisplay(ds_snow2,subplot_shape=(2,), figsize=(15,10))
# Plot up the variable in the first plot - Surface precipitation corrected (tbrg_precip_total_corr)
display.plot(variable_snow, subplot_index=(0,),day_night_background=True,
set_title="Black carbon case: Total precipitation")
# display.day_night_background(subplot_index=(0,))
# Plot up the variable in the second plot - Temperature: temp_mean
display.plot(variable_temp, subplot_index=(1,),day_night_background=True,
set_title="Black carbon case: Surface Temperature")
# display.day_night_background(subplot_index=(1,))
plt.show()

# Apr 3-8 2022
# Create a plotting display object with 2 plots
display = act.plotting.TimeSeriesDisplay(ds_snow3,subplot_shape=(2,), figsize=(15,10))
# Plot up the variable in the first plot - Surface precipitation corrected (tbrg_precip_total_corr)
display.plot(variable_snow, subplot_index=(0,),day_night_background=True,
set_title="Dust case: Total precipitation")
# display.day_night_background(subplot_index=(0,))
# Plot up the variable in the second plot - Temperature: temp_mean
display.plot(variable_temp, subplot_index=(1,),day_night_background=True,
set_title="Dust case: Surface Temperature")
# display.day_night_background(subplot_index=(1,))
plt.show()

## WRF
files_ctrl=sorted(glob.glob("/data/home/mqzhang/sail-cookbook/notebooks/downloaded_files/control/*"))
files_bc=sorted(glob.glob("/data/home/mqzhang/sail-cookbook/notebooks/downloaded_files/bc/*"))
files_dust=sorted(glob.glob("/data/home/mqzhang/sail-cookbook/notebooks/downloaded_files/dust/*"))
ds_ctrl = xr.open_mfdataset(files_ctrl,concat_dim="Time",combine="nested").xwrf.postprocess().squeeze()
ds_ctrl
<xarray.Dataset> Size: 543MB Dimensions: (Time: 168, y: 201, x: 201) Coordinates: * Time (Time) datetime64[ns] 1kB 2022-01-02 ... 2022-01-08T23:00:00 * x (x) float64 2kB -5.344e+04 -5.294e+04 ... 4.656e+04 * y (y) float64 2kB -5.6e+04 -5.55e+04 ... 4.35e+04 4.4e+04 Data variables: (12/22) Times (Time) |S19 3kB dask.array<chunksize=(24,), meta=np.ndarray> Q2 (Time, y, x) float32 27MB dask.array<chunksize=(24, 201, 201), meta=np.ndarray> T2 (Time, y, x) float32 27MB dask.array<chunksize=(24, 201, 201), meta=np.ndarray> PSFC (Time, y, x) float32 27MB dask.array<chunksize=(24, 201, 201), meta=np.ndarray> U10 (Time, y, x) float32 27MB dask.array<chunksize=(24, 201, 201), meta=np.ndarray> V10 (Time, y, x) float32 27MB dask.array<chunksize=(24, 201, 201), meta=np.ndarray> ... ... EMISS (Time, y, x) float32 27MB dask.array<chunksize=(24, 201, 201), meta=np.ndarray> HFX (Time, y, x) float32 27MB dask.array<chunksize=(24, 201, 201), meta=np.ndarray> QFX (Time, y, x) float32 27MB dask.array<chunksize=(24, 201, 201), meta=np.ndarray> LH (Time, y, x) float32 27MB dask.array<chunksize=(24, 201, 201), meta=np.ndarray> SNOWC (Time, y, x) float32 27MB dask.array<chunksize=(24, 201, 201), meta=np.ndarray> wrf_projection object 8B +proj=lcc +x_0=0 +y_0=0 +a=6370000 +b=6370000 +... Attributes: (12/88) TITLE: OUTPUT FROM WRF V4.4 MODEL START_DATE: 2021-12-31_00:00:00 WEST-EAST_GRID_DIMENSION: 202 SOUTH-NORTH_GRID_DIMENSION: 202 BOTTOM-TOP_GRID_DIMENSION: 50 DX: 500.0 ... ... ISURBAN: 13 ISOILWATER: 14 HYBRID_OPT: 2 ETAC: 0.2 history: Sat Mar 25 11:56:03 2023: ncrcat /global... NCO: netCDF Operators version 5.0.1 (Homepage...
xarray.Dataset
- Time: 168
- y: 201
- x: 201
- Time(Time)datetime64[ns]2022-01-02 ... 2022-01-08T23:00:00
- long_name :
- Time
- standard_name :
- time
array(['2022-01-02T00:00:00.000000000', '2022-01-02T01:00:00.000000000', '2022-01-02T02:00:00.000000000', '2022-01-02T03:00:00.000000000', '2022-01-02T04:00:00.000000000', '2022-01-02T05:00:00.000000000', '2022-01-02T06:00:00.000000000', '2022-01-02T07:00:00.000000000', '2022-01-02T08:00:00.000000000', '2022-01-02T09:00:00.000000000', '2022-01-02T10:00:00.000000000', '2022-01-02T11:00:00.000000000', '2022-01-02T12:00:00.000000000', '2022-01-02T13:00:00.000000000', '2022-01-02T14:00:00.000000000', '2022-01-02T15:00:00.000000000', '2022-01-02T16:00:00.000000000', '2022-01-02T17:00:00.000000000', '2022-01-02T18:00:00.000000000', '2022-01-02T19:00:00.000000000', '2022-01-02T20:00:00.000000000', '2022-01-02T21:00:00.000000000', '2022-01-02T22:00:00.000000000', '2022-01-02T23:00:00.000000000', '2022-01-03T00:00:00.000000000', '2022-01-03T01:00:00.000000000', '2022-01-03T02:00:00.000000000', '2022-01-03T03:00:00.000000000', '2022-01-03T04:00:00.000000000', '2022-01-03T05:00:00.000000000', '2022-01-03T06:00:00.000000000', '2022-01-03T07:00:00.000000000', '2022-01-03T08:00:00.000000000', '2022-01-03T09:00:00.000000000', '2022-01-03T10:00:00.000000000', '2022-01-03T11:00:00.000000000', '2022-01-03T12:00:00.000000000', '2022-01-03T13:00:00.000000000', '2022-01-03T14:00:00.000000000', '2022-01-03T15:00:00.000000000', '2022-01-03T16:00:00.000000000', '2022-01-03T17:00:00.000000000', '2022-01-03T18:00:00.000000000', '2022-01-03T19:00:00.000000000', '2022-01-03T20:00:00.000000000', '2022-01-03T21:00:00.000000000', '2022-01-03T22:00:00.000000000', '2022-01-03T23:00:00.000000000', '2022-01-04T00:00:00.000000000', '2022-01-04T01:00:00.000000000', '2022-01-04T02:00:00.000000000', '2022-01-04T03:00:00.000000000', '2022-01-04T04:00:00.000000000', '2022-01-04T05:00:00.000000000', '2022-01-04T06:00:00.000000000', '2022-01-04T07:00:00.000000000', '2022-01-04T08:00:00.000000000', '2022-01-04T09:00:00.000000000', '2022-01-04T10:00:00.000000000', '2022-01-04T11:00:00.000000000', '2022-01-04T12:00:00.000000000', '2022-01-04T13:00:00.000000000', '2022-01-04T14:00:00.000000000', '2022-01-04T15:00:00.000000000', '2022-01-04T16:00:00.000000000', '2022-01-04T17:00:00.000000000', '2022-01-04T18:00:00.000000000', '2022-01-04T19:00:00.000000000', '2022-01-04T20:00:00.000000000', '2022-01-04T21:00:00.000000000', '2022-01-04T22:00:00.000000000', '2022-01-04T23:00:00.000000000', '2022-01-05T00:00:00.000000000', '2022-01-05T01:00:00.000000000', '2022-01-05T02:00:00.000000000', '2022-01-05T03:00:00.000000000', '2022-01-05T04:00:00.000000000', '2022-01-05T05:00:00.000000000', '2022-01-05T06:00:00.000000000', '2022-01-05T07:00:00.000000000', '2022-01-05T08:00:00.000000000', '2022-01-05T09:00:00.000000000', '2022-01-05T10:00:00.000000000', '2022-01-05T11:00:00.000000000', '2022-01-05T12:00:00.000000000', '2022-01-05T13:00:00.000000000', '2022-01-05T14:00:00.000000000', '2022-01-05T15:00:00.000000000', '2022-01-05T16:00:00.000000000', '2022-01-05T17:00:00.000000000', '2022-01-05T18:00:00.000000000', '2022-01-05T19:00:00.000000000', '2022-01-05T20:00:00.000000000', '2022-01-05T21:00:00.000000000', '2022-01-05T22:00:00.000000000', '2022-01-05T23:00:00.000000000', '2022-01-06T00:00:00.000000000', '2022-01-06T01:00:00.000000000', '2022-01-06T02:00:00.000000000', '2022-01-06T03:00:00.000000000', '2022-01-06T04:00:00.000000000', '2022-01-06T05:00:00.000000000', '2022-01-06T06:00:00.000000000', '2022-01-06T07:00:00.000000000', '2022-01-06T08:00:00.000000000', '2022-01-06T09:00:00.000000000', '2022-01-06T10:00:00.000000000', '2022-01-06T11:00:00.000000000', '2022-01-06T12:00:00.000000000', '2022-01-06T13:00:00.000000000', '2022-01-06T14:00:00.000000000', '2022-01-06T15:00:00.000000000', '2022-01-06T16:00:00.000000000', '2022-01-06T17:00:00.000000000', '2022-01-06T18:00:00.000000000', '2022-01-06T19:00:00.000000000', '2022-01-06T20:00:00.000000000', '2022-01-06T21:00:00.000000000', '2022-01-06T22:00:00.000000000', '2022-01-06T23:00:00.000000000', '2022-01-07T00:00:00.000000000', '2022-01-07T01:00:00.000000000', '2022-01-07T02:00:00.000000000', '2022-01-07T03:00:00.000000000', '2022-01-07T04:00:00.000000000', '2022-01-07T05:00:00.000000000', '2022-01-07T06:00:00.000000000', '2022-01-07T07:00:00.000000000', '2022-01-07T08:00:00.000000000', '2022-01-07T09:00:00.000000000', '2022-01-07T10:00:00.000000000', '2022-01-07T11:00:00.000000000', '2022-01-07T12:00:00.000000000', '2022-01-07T13:00:00.000000000', '2022-01-07T14:00:00.000000000', '2022-01-07T15:00:00.000000000', '2022-01-07T16:00:00.000000000', '2022-01-07T17:00:00.000000000', '2022-01-07T18:00:00.000000000', '2022-01-07T19:00:00.000000000', '2022-01-07T20:00:00.000000000', '2022-01-07T21:00:00.000000000', '2022-01-07T22:00:00.000000000', '2022-01-07T23:00:00.000000000', '2022-01-08T00:00:00.000000000', '2022-01-08T01:00:00.000000000', '2022-01-08T02:00:00.000000000', '2022-01-08T03:00:00.000000000', '2022-01-08T04:00:00.000000000', '2022-01-08T05:00:00.000000000', '2022-01-08T06:00:00.000000000', '2022-01-08T07:00:00.000000000', '2022-01-08T08:00:00.000000000', '2022-01-08T09:00:00.000000000', '2022-01-08T10:00:00.000000000', '2022-01-08T11:00:00.000000000', '2022-01-08T12:00:00.000000000', '2022-01-08T13:00:00.000000000', '2022-01-08T14:00:00.000000000', '2022-01-08T15:00:00.000000000', '2022-01-08T16:00:00.000000000', '2022-01-08T17:00:00.000000000', '2022-01-08T18:00:00.000000000', '2022-01-08T19:00:00.000000000', '2022-01-08T20:00:00.000000000', '2022-01-08T21:00:00.000000000', '2022-01-08T22:00:00.000000000', '2022-01-08T23:00:00.000000000'], dtype='datetime64[ns]')
- x(x)float64-5.344e+04 -5.294e+04 ... 4.656e+04
- units :
- m
- standard_name :
- projection_x_coordinate
- axis :
- X
array([-53443.825943, -52943.825943, -52443.825943, ..., 45556.174057, 46056.174057, 46556.174057])
- y(y)float64-5.6e+04 -5.55e+04 ... 4.4e+04
- units :
- m
- standard_name :
- projection_y_coordinate
- axis :
- Y
array([-55999.217634, -55499.217634, -54999.217634, ..., 43000.782366, 43500.782366, 44000.782366])
- Times(Time)|S19dask.array<chunksize=(24,), meta=np.ndarray>
- cell_methods :
- Time: mean
Array Chunk Bytes 3.12 kiB 456 B Shape (168,) (24,) Dask graph 7 chunks in 15 graph layers Data type |S19 numpy.ndarray - Q2(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- QV at 2 M
- units :
- kg kg-1
- stagger :
- cell_methods :
- Time: mean
- standard_name :
- humidity_mixing_ratio
- long_name :
- humidity_mixing_ratio_at_2m_agl
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - T2(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- TEMP at 2 M
- units :
- K
- stagger :
- cell_methods :
- Time: mean
- standard_name :
- air_temperature
- long_name :
- air_temperature_at_2m_agl
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - PSFC(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- SFC PRESSURE
- units :
- Pa
- stagger :
- cell_methods :
- Time: mean
- standard_name :
- air_pressure
- long_name :
- air_pressure_at_surface
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - U10(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- U at 10 M
- units :
- m s-1
- stagger :
- cell_methods :
- Time: mean
- standard_name :
- x_wind
- long_name :
- x_wind_at_10m_agl
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - V10(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- V at 10 M
- units :
- m s-1
- stagger :
- cell_methods :
- Time: mean
- standard_name :
- y_wind
- long_name :
- y_wind_at_10m_agl
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - SNOW(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- SNOW WATER EQUIVALENT
- units :
- kg m-2
- stagger :
- cell_methods :
- Time: mean
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - SNOWH(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- PHYSICAL SNOW DEPTH
- units :
- m
- stagger :
- cell_methods :
- Time: mean
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - HGT_SHAD(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Height of orographic shadow
- units :
- m
- stagger :
- cell_methods :
- Time: mean
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - TSK(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- SURFACE SKIN TEMPERATURE
- units :
- K
- stagger :
- cell_methods :
- Time: mean
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - RAINC(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- ACCUMULATED TOTAL CUMULUS PRECIPITATION
- units :
- mm
- stagger :
- cell_methods :
- Time: mean
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - RAINNC(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- ACCUMULATED TOTAL GRID SCALE PRECIPITATION
- units :
- mm
- stagger :
- cell_methods :
- Time: mean
- standard_name :
- integral_of_lwe_precipitation_rate_wrt_time
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - SWDOWN(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- DOWNWARD SHORT WAVE FLUX AT GROUND SURFACE
- units :
- W m-2
- stagger :
- cell_methods :
- Time: mean
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - GLW(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- DOWNWARD LONG WAVE FLUX AT GROUND SURFACE
- units :
- W m-2
- stagger :
- cell_methods :
- Time: mean
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - SWNORM(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- NORMAL SHORT WAVE FLUX AT GROUND SURFACE (SLOPE-DEPENDENT)
- units :
- W m-2
- stagger :
- cell_methods :
- Time: mean
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - ALBEDO(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- ALBEDO
- stagger :
- cell_methods :
- Time: mean
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - EMISS(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- SURFACE EMISSIVITY
- units :
- stagger :
- cell_methods :
- Time: mean
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - HFX(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- UPWARD HEAT FLUX AT THE SURFACE
- units :
- W m-2
- stagger :
- cell_methods :
- Time: mean
- standard_name :
- surface_upward_heat_flux_in_air
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - QFX(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- UPWARD MOISTURE FLUX AT THE SURFACE
- units :
- kg m-2 s-1
- stagger :
- cell_methods :
- Time: mean
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - LH(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- LATENT HEAT FLUX AT THE SURFACE
- units :
- W m-2
- stagger :
- cell_methods :
- Time: mean
- standard_name :
- surface_upward_latent_heat_flux_in_air
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - SNOWC(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- FLAG INDICATING SNOW COVERAGE (1 FOR SNOW COVER)
- units :
- stagger :
- cell_methods :
- Time: mean
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - wrf_projection()object+proj=lcc +x_0=0 +y_0=0 +a=63700...
- crs_wkt :
- PROJCRS["unknown",BASEGEOGCRS["unknown",DATUM["unknown",ELLIPSOID["unknown",6370000,0,LENGTHUNIT["metre",1,ID["EPSG",9001]]]],PRIMEM["Greenwich",0,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8901]]],CONVERSION["unknown",METHOD["Lambert Conic Conformal (2SP)",ID["EPSG",9802]],PARAMETER["Latitude of false origin",38.900016784668,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8821]],PARAMETER["Longitude of false origin",-107,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8822]],PARAMETER["Latitude of 1st standard parallel",30,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8823]],PARAMETER["Latitude of 2nd standard parallel",50,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8824]],PARAMETER["Easting at false origin",0,LENGTHUNIT["metre",1],ID["EPSG",8826]],PARAMETER["Northing at false origin",0,LENGTHUNIT["metre",1],ID["EPSG",8827]]],CS[Cartesian,2],AXIS["(E)",east,ORDER[1],LENGTHUNIT["metre",1,ID["EPSG",9001]]],AXIS["(N)",north,ORDER[2],LENGTHUNIT["metre",1,ID["EPSG",9001]]]]
- semi_major_axis :
- 6370000.0
- semi_minor_axis :
- 6370000.0
- inverse_flattening :
- 0.0
- reference_ellipsoid_name :
- unknown
- longitude_of_prime_meridian :
- 0.0
- prime_meridian_name :
- Greenwich
- geographic_crs_name :
- unknown
- horizontal_datum_name :
- unknown
- projected_crs_name :
- unknown
- grid_mapping_name :
- lambert_conformal_conic
- standard_parallel :
- (30.0, 50.0)
- latitude_of_projection_origin :
- 38.90001678466797
- longitude_of_central_meridian :
- -107.0
- false_easting :
- 0.0
- false_northing :
- 0.0
array(<Projected CRS: +proj=lcc +x_0=0 +y_0=0 +a=6370000 +b=6370000 +lat ...> Name: unknown Axis Info [cartesian]: - E[east]: Easting (metre) - N[north]: Northing (metre) Area of Use: - undefined Coordinate Operation: - name: unknown - method: Lambert Conic Conformal (2SP) Datum: unknown - Ellipsoid: unknown - Prime Meridian: Greenwich , dtype=object)
- TimePandasIndex
PandasIndex(DatetimeIndex(['2022-01-02 00:00:00', '2022-01-02 01:00:00', '2022-01-02 02:00:00', '2022-01-02 03:00:00', '2022-01-02 04:00:00', '2022-01-02 05:00:00', '2022-01-02 06:00:00', '2022-01-02 07:00:00', '2022-01-02 08:00:00', '2022-01-02 09:00:00', ... '2022-01-08 14:00:00', '2022-01-08 15:00:00', '2022-01-08 16:00:00', '2022-01-08 17:00:00', '2022-01-08 18:00:00', '2022-01-08 19:00:00', '2022-01-08 20:00:00', '2022-01-08 21:00:00', '2022-01-08 22:00:00', '2022-01-08 23:00:00'], dtype='datetime64[ns]', name='Time', length=168, freq=None))
- xPandasIndex
PandasIndex(Index([-53443.82594293087, -52943.82594293087, -52443.82594293087, -51943.82594293087, -51443.82594293087, -50943.82594293087, -50443.82594293087, -49943.82594293087, -49443.82594293087, -48943.82594293087, ... 42056.17405706913, 42556.17405706913, 43056.17405706913, 43556.17405706913, 44056.17405706913, 44556.17405706913, 45056.17405706913, 45556.17405706913, 46056.17405706913, 46556.17405706913], dtype='float64', name='x', length=201))
- yPandasIndex
PandasIndex(Index([-55999.21763437279, -55499.21763437279, -54999.21763437279, -54499.21763437279, -53999.21763437279, -53499.21763437279, -52999.21763437279, -52499.21763437279, -51999.21763437279, -51499.21763437279, ... 39500.78236562721, 40000.78236562721, 40500.78236562721, 41000.78236562721, 41500.78236562721, 42000.78236562721, 42500.78236562721, 43000.78236562721, 43500.78236562721, 44000.78236562721], dtype='float64', name='y', length=201))
- TITLE :
- OUTPUT FROM WRF V4.4 MODEL
- START_DATE :
- 2021-12-31_00:00:00
- WEST-EAST_GRID_DIMENSION :
- 202
- SOUTH-NORTH_GRID_DIMENSION :
- 202
- BOTTOM-TOP_GRID_DIMENSION :
- 50
- DX :
- 500.0
- DY :
- 500.0
- AERCU_OPT :
- 0
- AERCU_FCT :
- 1.0
- IDEAL_CASE :
- 0
- DIFF_6TH_SLOPEOPT :
- 0
- AUTO_LEVELS_OPT :
- 2
- DIFF_6TH_THRESH :
- 0.1
- DZBOT :
- 50.0
- DZSTRETCH_S :
- 1.3
- DZSTRETCH_U :
- 1.1
- GRIDTYPE :
- C
- DIFF_OPT :
- 1
- KM_OPT :
- 4
- DAMP_OPT :
- 0
- DAMPCOEF :
- 0.2
- KHDIF :
- 0.0
- KVDIF :
- 0.0
- MP_PHYSICS :
- 8
- RA_LW_PHYSICS :
- 3
- RA_SW_PHYSICS :
- 3
- SF_SFCLAY_PHYSICS :
- 2
- SF_SURFACE_PHYSICS :
- 4
- BL_PBL_PHYSICS :
- 2
- CU_PHYSICS :
- 0
- SF_LAKE_PHYSICS :
- 0
- SURFACE_INPUT_SOURCE :
- 1
- SST_UPDATE :
- 1
- GHG_INPUT :
- 1
- GRID_FDDA :
- 0
- GFDDA_INTERVAL_M :
- 0
- GFDDA_END_H :
- 0
- GRID_SFDDA :
- 0
- SGFDDA_INTERVAL_M :
- 0
- SGFDDA_END_H :
- 0
- HYPSOMETRIC_OPT :
- 2
- USE_THETA_M :
- 1
- GWD_OPT :
- 0
- SF_URBAN_PHYSICS :
- 0
- SF_SURFACE_MOSAIC :
- 0
- SF_OCEAN_PHYSICS :
- 0
- WEST-EAST_PATCH_START_UNSTAG :
- 1
- WEST-EAST_PATCH_END_UNSTAG :
- 201
- WEST-EAST_PATCH_START_STAG :
- 1
- WEST-EAST_PATCH_END_STAG :
- 202
- SOUTH-NORTH_PATCH_START_UNSTAG :
- 1
- SOUTH-NORTH_PATCH_END_UNSTAG :
- 201
- SOUTH-NORTH_PATCH_START_STAG :
- 1
- SOUTH-NORTH_PATCH_END_STAG :
- 202
- BOTTOM-TOP_PATCH_START_UNSTAG :
- 1
- BOTTOM-TOP_PATCH_END_UNSTAG :
- 49
- BOTTOM-TOP_PATCH_START_STAG :
- 1
- BOTTOM-TOP_PATCH_END_STAG :
- 50
- GRID_ID :
- 3
- PARENT_ID :
- 2
- I_PARENT_START :
- 67
- J_PARENT_START :
- 67
- PARENT_GRID_RATIO :
- 3
- DT :
- 2.6666667
- CEN_LAT :
- 38.84523
- CEN_LON :
- -107.040375
- TRUELAT1 :
- 30.0
- TRUELAT2 :
- 50.0
- MOAD_CEN_LAT :
- 38.900017
- STAND_LON :
- -107.0
- POLE_LAT :
- 90.0
- POLE_LON :
- 0.0
- GMT :
- 0.0
- JULYR :
- 2021
- JULDAY :
- 365
- MAP_PROJ :
- 1
- MAP_PROJ_CHAR :
- Lambert Conformal
- MMINLU :
- MODIFIED_IGBP_MODIS_NOAH
- NUM_LAND_CAT :
- 21
- ISWATER :
- 17
- ISLAKE :
- 21
- ISICE :
- 15
- ISURBAN :
- 13
- ISOILWATER :
- 14
- HYBRID_OPT :
- 2
- ETAC :
- 0.2
- history :
- Sat Mar 25 11:56:03 2023: ncrcat /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-02_00:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-02_01:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-02_02:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-02_03:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-02_04:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-02_05:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-02_06:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-02_07:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-02_08:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-02_09:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-02_10:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-02_11:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-02_12:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-02_13:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-02_14:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-02_15:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-02_16:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-02_17:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-02_18:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-02_19:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-02_20:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-02_21:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-02_22:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-02_23:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_shared/hourly/wrfhourly_d03_2022-01-02.nc
- NCO :
- netCDF Operators version 5.0.1 (Homepage = http://nco.sf.net, Code = http://github.com/nco/nco)
formatter = DatetimeTickFormatter(hours="%d %b %Y \n %H:%M UTC")
ds_ctrl["T2"].mean(dim=['x', 'y']).hvplot(xformatter=formatter)
ds_bc = xr.open_mfdataset(files_bc,concat_dim="Time",combine="nested").xwrf.postprocess().squeeze()
ds_bc
<xarray.Dataset> Size: 543MB Dimensions: (Time: 168, y: 201, x: 201) Coordinates: * Time (Time) datetime64[ns] 1kB 2022-01-25 ... 2022-01-31T23:00:00 * x (x) float64 2kB -5.344e+04 -5.294e+04 ... 4.656e+04 * y (y) float64 2kB -5.6e+04 -5.55e+04 ... 4.35e+04 4.4e+04 Data variables: (12/22) Times (Time) |S19 3kB dask.array<chunksize=(24,), meta=np.ndarray> Q2 (Time, y, x) float32 27MB dask.array<chunksize=(24, 201, 201), meta=np.ndarray> T2 (Time, y, x) float32 27MB dask.array<chunksize=(24, 201, 201), meta=np.ndarray> PSFC (Time, y, x) float32 27MB dask.array<chunksize=(24, 201, 201), meta=np.ndarray> U10 (Time, y, x) float32 27MB dask.array<chunksize=(24, 201, 201), meta=np.ndarray> V10 (Time, y, x) float32 27MB dask.array<chunksize=(24, 201, 201), meta=np.ndarray> ... ... EMISS (Time, y, x) float32 27MB dask.array<chunksize=(24, 201, 201), meta=np.ndarray> HFX (Time, y, x) float32 27MB dask.array<chunksize=(24, 201, 201), meta=np.ndarray> QFX (Time, y, x) float32 27MB dask.array<chunksize=(24, 201, 201), meta=np.ndarray> LH (Time, y, x) float32 27MB dask.array<chunksize=(24, 201, 201), meta=np.ndarray> SNOWC (Time, y, x) float32 27MB dask.array<chunksize=(24, 201, 201), meta=np.ndarray> wrf_projection object 8B +proj=lcc +x_0=0 +y_0=0 +a=6370000 +b=6370000 +... Attributes: (12/88) TITLE: OUTPUT FROM WRF V4.4 MODEL START_DATE: 2022-01-17_00:00:00 WEST-EAST_GRID_DIMENSION: 202 SOUTH-NORTH_GRID_DIMENSION: 202 BOTTOM-TOP_GRID_DIMENSION: 50 DX: 500.0 ... ... ISURBAN: 13 ISOILWATER: 14 HYBRID_OPT: 2 ETAC: 0.2 history: Sat Mar 25 11:57:59 2023: ncrcat /global... NCO: netCDF Operators version 5.0.1 (Homepage...
xarray.Dataset
- Time: 168
- y: 201
- x: 201
- Time(Time)datetime64[ns]2022-01-25 ... 2022-01-31T23:00:00
- long_name :
- Time
- standard_name :
- time
array(['2022-01-25T00:00:00.000000000', '2022-01-25T01:00:00.000000000', '2022-01-25T02:00:00.000000000', '2022-01-25T03:00:00.000000000', '2022-01-25T04:00:00.000000000', '2022-01-25T05:00:00.000000000', '2022-01-25T06:00:00.000000000', '2022-01-25T07:00:00.000000000', '2022-01-25T08:00:00.000000000', '2022-01-25T09:00:00.000000000', '2022-01-25T10:00:00.000000000', '2022-01-25T11:00:00.000000000', '2022-01-25T12:00:00.000000000', '2022-01-25T13:00:00.000000000', '2022-01-25T14:00:00.000000000', '2022-01-25T15:00:00.000000000', '2022-01-25T16:00:00.000000000', '2022-01-25T17:00:00.000000000', '2022-01-25T18:00:00.000000000', '2022-01-25T19:00:00.000000000', '2022-01-25T20:00:00.000000000', '2022-01-25T21:00:00.000000000', '2022-01-25T22:00:00.000000000', '2022-01-25T23:00:00.000000000', '2022-01-26T00:00:00.000000000', '2022-01-26T01:00:00.000000000', '2022-01-26T02:00:00.000000000', '2022-01-26T03:00:00.000000000', '2022-01-26T04:00:00.000000000', '2022-01-26T05:00:00.000000000', '2022-01-26T06:00:00.000000000', '2022-01-26T07:00:00.000000000', '2022-01-26T08:00:00.000000000', '2022-01-26T09:00:00.000000000', '2022-01-26T10:00:00.000000000', '2022-01-26T11:00:00.000000000', '2022-01-26T12:00:00.000000000', '2022-01-26T13:00:00.000000000', '2022-01-26T14:00:00.000000000', '2022-01-26T15:00:00.000000000', '2022-01-26T16:00:00.000000000', '2022-01-26T17:00:00.000000000', '2022-01-26T18:00:00.000000000', '2022-01-26T19:00:00.000000000', '2022-01-26T20:00:00.000000000', '2022-01-26T21:00:00.000000000', '2022-01-26T22:00:00.000000000', '2022-01-26T23:00:00.000000000', '2022-01-27T00:00:00.000000000', '2022-01-27T01:00:00.000000000', '2022-01-27T02:00:00.000000000', '2022-01-27T03:00:00.000000000', '2022-01-27T04:00:00.000000000', '2022-01-27T05:00:00.000000000', '2022-01-27T06:00:00.000000000', '2022-01-27T07:00:00.000000000', '2022-01-27T08:00:00.000000000', '2022-01-27T09:00:00.000000000', '2022-01-27T10:00:00.000000000', '2022-01-27T11:00:00.000000000', '2022-01-27T12:00:00.000000000', '2022-01-27T13:00:00.000000000', '2022-01-27T14:00:00.000000000', '2022-01-27T15:00:00.000000000', '2022-01-27T16:00:00.000000000', '2022-01-27T17:00:00.000000000', '2022-01-27T18:00:00.000000000', '2022-01-27T19:00:00.000000000', '2022-01-27T20:00:00.000000000', '2022-01-27T21:00:00.000000000', '2022-01-27T22:00:00.000000000', '2022-01-27T23:00:00.000000000', '2022-01-28T00:00:00.000000000', '2022-01-28T01:00:00.000000000', '2022-01-28T02:00:00.000000000', '2022-01-28T03:00:00.000000000', '2022-01-28T04:00:00.000000000', '2022-01-28T05:00:00.000000000', '2022-01-28T06:00:00.000000000', '2022-01-28T07:00:00.000000000', '2022-01-28T08:00:00.000000000', '2022-01-28T09:00:00.000000000', '2022-01-28T10:00:00.000000000', '2022-01-28T11:00:00.000000000', '2022-01-28T12:00:00.000000000', '2022-01-28T13:00:00.000000000', '2022-01-28T14:00:00.000000000', '2022-01-28T15:00:00.000000000', '2022-01-28T16:00:00.000000000', '2022-01-28T17:00:00.000000000', '2022-01-28T18:00:00.000000000', '2022-01-28T19:00:00.000000000', '2022-01-28T20:00:00.000000000', '2022-01-28T21:00:00.000000000', '2022-01-28T22:00:00.000000000', '2022-01-28T23:00:00.000000000', '2022-01-29T00:00:00.000000000', '2022-01-29T01:00:00.000000000', '2022-01-29T02:00:00.000000000', '2022-01-29T03:00:00.000000000', '2022-01-29T04:00:00.000000000', '2022-01-29T05:00:00.000000000', '2022-01-29T06:00:00.000000000', '2022-01-29T07:00:00.000000000', '2022-01-29T08:00:00.000000000', '2022-01-29T09:00:00.000000000', '2022-01-29T10:00:00.000000000', '2022-01-29T11:00:00.000000000', '2022-01-29T12:00:00.000000000', '2022-01-29T13:00:00.000000000', '2022-01-29T14:00:00.000000000', '2022-01-29T15:00:00.000000000', '2022-01-29T16:00:00.000000000', '2022-01-29T17:00:00.000000000', '2022-01-29T18:00:00.000000000', '2022-01-29T19:00:00.000000000', '2022-01-29T20:00:00.000000000', '2022-01-29T21:00:00.000000000', '2022-01-29T22:00:00.000000000', '2022-01-29T23:00:00.000000000', '2022-01-30T00:00:00.000000000', '2022-01-30T01:00:00.000000000', '2022-01-30T02:00:00.000000000', '2022-01-30T03:00:00.000000000', '2022-01-30T04:00:00.000000000', '2022-01-30T05:00:00.000000000', '2022-01-30T06:00:00.000000000', '2022-01-30T07:00:00.000000000', '2022-01-30T08:00:00.000000000', '2022-01-30T09:00:00.000000000', '2022-01-30T10:00:00.000000000', '2022-01-30T11:00:00.000000000', '2022-01-30T12:00:00.000000000', '2022-01-30T13:00:00.000000000', '2022-01-30T14:00:00.000000000', '2022-01-30T15:00:00.000000000', '2022-01-30T16:00:00.000000000', '2022-01-30T17:00:00.000000000', '2022-01-30T18:00:00.000000000', '2022-01-30T19:00:00.000000000', '2022-01-30T20:00:00.000000000', '2022-01-30T21:00:00.000000000', '2022-01-30T22:00:00.000000000', '2022-01-30T23:00:00.000000000', '2022-01-31T00:00:00.000000000', '2022-01-31T01:00:00.000000000', '2022-01-31T02:00:00.000000000', '2022-01-31T03:00:00.000000000', '2022-01-31T04:00:00.000000000', '2022-01-31T05:00:00.000000000', '2022-01-31T06:00:00.000000000', '2022-01-31T07:00:00.000000000', '2022-01-31T08:00:00.000000000', '2022-01-31T09:00:00.000000000', '2022-01-31T10:00:00.000000000', '2022-01-31T11:00:00.000000000', '2022-01-31T12:00:00.000000000', '2022-01-31T13:00:00.000000000', '2022-01-31T14:00:00.000000000', '2022-01-31T15:00:00.000000000', '2022-01-31T16:00:00.000000000', '2022-01-31T17:00:00.000000000', '2022-01-31T18:00:00.000000000', '2022-01-31T19:00:00.000000000', '2022-01-31T20:00:00.000000000', '2022-01-31T21:00:00.000000000', '2022-01-31T22:00:00.000000000', '2022-01-31T23:00:00.000000000'], dtype='datetime64[ns]')
- x(x)float64-5.344e+04 -5.294e+04 ... 4.656e+04
- units :
- m
- standard_name :
- projection_x_coordinate
- axis :
- X
array([-53443.825943, -52943.825943, -52443.825943, ..., 45556.174057, 46056.174057, 46556.174057])
- y(y)float64-5.6e+04 -5.55e+04 ... 4.4e+04
- units :
- m
- standard_name :
- projection_y_coordinate
- axis :
- Y
array([-55999.217634, -55499.217634, -54999.217634, ..., 43000.782366, 43500.782366, 44000.782366])
- Times(Time)|S19dask.array<chunksize=(24,), meta=np.ndarray>
- cell_methods :
- Time: mean
Array Chunk Bytes 3.12 kiB 456 B Shape (168,) (24,) Dask graph 7 chunks in 15 graph layers Data type |S19 numpy.ndarray - Q2(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- QV at 2 M
- units :
- kg kg-1
- stagger :
- cell_methods :
- Time: mean
- standard_name :
- humidity_mixing_ratio
- long_name :
- humidity_mixing_ratio_at_2m_agl
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - T2(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- TEMP at 2 M
- units :
- K
- stagger :
- cell_methods :
- Time: mean
- standard_name :
- air_temperature
- long_name :
- air_temperature_at_2m_agl
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - PSFC(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- SFC PRESSURE
- units :
- Pa
- stagger :
- cell_methods :
- Time: mean
- standard_name :
- air_pressure
- long_name :
- air_pressure_at_surface
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - U10(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- U at 10 M
- units :
- m s-1
- stagger :
- cell_methods :
- Time: mean
- standard_name :
- x_wind
- long_name :
- x_wind_at_10m_agl
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - V10(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- V at 10 M
- units :
- m s-1
- stagger :
- cell_methods :
- Time: mean
- standard_name :
- y_wind
- long_name :
- y_wind_at_10m_agl
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - SNOW(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- SNOW WATER EQUIVALENT
- units :
- kg m-2
- stagger :
- cell_methods :
- Time: mean
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - SNOWH(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- PHYSICAL SNOW DEPTH
- units :
- m
- stagger :
- cell_methods :
- Time: mean
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - HGT_SHAD(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Height of orographic shadow
- units :
- m
- stagger :
- cell_methods :
- Time: mean
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - TSK(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- SURFACE SKIN TEMPERATURE
- units :
- K
- stagger :
- cell_methods :
- Time: mean
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - RAINC(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- ACCUMULATED TOTAL CUMULUS PRECIPITATION
- units :
- mm
- stagger :
- cell_methods :
- Time: mean
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - RAINNC(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- ACCUMULATED TOTAL GRID SCALE PRECIPITATION
- units :
- mm
- stagger :
- cell_methods :
- Time: mean
- standard_name :
- integral_of_lwe_precipitation_rate_wrt_time
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - SWDOWN(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- DOWNWARD SHORT WAVE FLUX AT GROUND SURFACE
- units :
- W m-2
- stagger :
- cell_methods :
- Time: mean
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - GLW(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- DOWNWARD LONG WAVE FLUX AT GROUND SURFACE
- units :
- W m-2
- stagger :
- cell_methods :
- Time: mean
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - SWNORM(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- NORMAL SHORT WAVE FLUX AT GROUND SURFACE (SLOPE-DEPENDENT)
- units :
- W m-2
- stagger :
- cell_methods :
- Time: mean
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - ALBEDO(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- ALBEDO
- stagger :
- cell_methods :
- Time: mean
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - EMISS(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- SURFACE EMISSIVITY
- units :
- stagger :
- cell_methods :
- Time: mean
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - HFX(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- UPWARD HEAT FLUX AT THE SURFACE
- units :
- W m-2
- stagger :
- cell_methods :
- Time: mean
- standard_name :
- surface_upward_heat_flux_in_air
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - QFX(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- UPWARD MOISTURE FLUX AT THE SURFACE
- units :
- kg m-2 s-1
- stagger :
- cell_methods :
- Time: mean
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - LH(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- LATENT HEAT FLUX AT THE SURFACE
- units :
- W m-2
- stagger :
- cell_methods :
- Time: mean
- standard_name :
- surface_upward_latent_heat_flux_in_air
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - SNOWC(Time, y, x)float32dask.array<chunksize=(24, 201, 201), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- FLAG INDICATING SNOW COVERAGE (1 FOR SNOW COVER)
- units :
- stagger :
- cell_methods :
- Time: mean
- grid_mapping :
- wrf_projection
Array Chunk Bytes 25.89 MiB 3.70 MiB Shape (168, 201, 201) (24, 201, 201) Dask graph 7 chunks in 15 graph layers Data type float32 numpy.ndarray - wrf_projection()object+proj=lcc +x_0=0 +y_0=0 +a=63700...
- crs_wkt :
- PROJCRS["unknown",BASEGEOGCRS["unknown",DATUM["unknown",ELLIPSOID["unknown",6370000,0,LENGTHUNIT["metre",1,ID["EPSG",9001]]]],PRIMEM["Greenwich",0,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8901]]],CONVERSION["unknown",METHOD["Lambert Conic Conformal (2SP)",ID["EPSG",9802]],PARAMETER["Latitude of false origin",38.900016784668,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8821]],PARAMETER["Longitude of false origin",-107,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8822]],PARAMETER["Latitude of 1st standard parallel",30,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8823]],PARAMETER["Latitude of 2nd standard parallel",50,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8824]],PARAMETER["Easting at false origin",0,LENGTHUNIT["metre",1],ID["EPSG",8826]],PARAMETER["Northing at false origin",0,LENGTHUNIT["metre",1],ID["EPSG",8827]]],CS[Cartesian,2],AXIS["(E)",east,ORDER[1],LENGTHUNIT["metre",1,ID["EPSG",9001]]],AXIS["(N)",north,ORDER[2],LENGTHUNIT["metre",1,ID["EPSG",9001]]]]
- semi_major_axis :
- 6370000.0
- semi_minor_axis :
- 6370000.0
- inverse_flattening :
- 0.0
- reference_ellipsoid_name :
- unknown
- longitude_of_prime_meridian :
- 0.0
- prime_meridian_name :
- Greenwich
- geographic_crs_name :
- unknown
- horizontal_datum_name :
- unknown
- projected_crs_name :
- unknown
- grid_mapping_name :
- lambert_conformal_conic
- standard_parallel :
- (30.0, 50.0)
- latitude_of_projection_origin :
- 38.90001678466797
- longitude_of_central_meridian :
- -107.0
- false_easting :
- 0.0
- false_northing :
- 0.0
array(<Projected CRS: +proj=lcc +x_0=0 +y_0=0 +a=6370000 +b=6370000 +lat ...> Name: unknown Axis Info [cartesian]: - E[east]: Easting (metre) - N[north]: Northing (metre) Area of Use: - undefined Coordinate Operation: - name: unknown - method: Lambert Conic Conformal (2SP) Datum: unknown - Ellipsoid: unknown - Prime Meridian: Greenwich , dtype=object)
- TimePandasIndex
PandasIndex(DatetimeIndex(['2022-01-25 00:00:00', '2022-01-25 01:00:00', '2022-01-25 02:00:00', '2022-01-25 03:00:00', '2022-01-25 04:00:00', '2022-01-25 05:00:00', '2022-01-25 06:00:00', '2022-01-25 07:00:00', '2022-01-25 08:00:00', '2022-01-25 09:00:00', ... '2022-01-31 14:00:00', '2022-01-31 15:00:00', '2022-01-31 16:00:00', '2022-01-31 17:00:00', '2022-01-31 18:00:00', '2022-01-31 19:00:00', '2022-01-31 20:00:00', '2022-01-31 21:00:00', '2022-01-31 22:00:00', '2022-01-31 23:00:00'], dtype='datetime64[ns]', name='Time', length=168, freq=None))
- xPandasIndex
PandasIndex(Index([-53443.82594293087, -52943.82594293087, -52443.82594293087, -51943.82594293087, -51443.82594293087, -50943.82594293087, -50443.82594293087, -49943.82594293087, -49443.82594293087, -48943.82594293087, ... 42056.17405706913, 42556.17405706913, 43056.17405706913, 43556.17405706913, 44056.17405706913, 44556.17405706913, 45056.17405706913, 45556.17405706913, 46056.17405706913, 46556.17405706913], dtype='float64', name='x', length=201))
- yPandasIndex
PandasIndex(Index([-55999.21763437279, -55499.21763437279, -54999.21763437279, -54499.21763437279, -53999.21763437279, -53499.21763437279, -52999.21763437279, -52499.21763437279, -51999.21763437279, -51499.21763437279, ... 39500.78236562721, 40000.78236562721, 40500.78236562721, 41000.78236562721, 41500.78236562721, 42000.78236562721, 42500.78236562721, 43000.78236562721, 43500.78236562721, 44000.78236562721], dtype='float64', name='y', length=201))
- TITLE :
- OUTPUT FROM WRF V4.4 MODEL
- START_DATE :
- 2022-01-17_00:00:00
- WEST-EAST_GRID_DIMENSION :
- 202
- SOUTH-NORTH_GRID_DIMENSION :
- 202
- BOTTOM-TOP_GRID_DIMENSION :
- 50
- DX :
- 500.0
- DY :
- 500.0
- AERCU_OPT :
- 0
- AERCU_FCT :
- 1.0
- IDEAL_CASE :
- 0
- DIFF_6TH_SLOPEOPT :
- 0
- AUTO_LEVELS_OPT :
- 2
- DIFF_6TH_THRESH :
- 0.1
- DZBOT :
- 50.0
- DZSTRETCH_S :
- 1.3
- DZSTRETCH_U :
- 1.1
- GRIDTYPE :
- C
- DIFF_OPT :
- 1
- KM_OPT :
- 4
- DAMP_OPT :
- 0
- DAMPCOEF :
- 0.2
- KHDIF :
- 0.0
- KVDIF :
- 0.0
- MP_PHYSICS :
- 8
- RA_LW_PHYSICS :
- 3
- RA_SW_PHYSICS :
- 3
- SF_SFCLAY_PHYSICS :
- 2
- SF_SURFACE_PHYSICS :
- 4
- BL_PBL_PHYSICS :
- 2
- CU_PHYSICS :
- 0
- SF_LAKE_PHYSICS :
- 0
- SURFACE_INPUT_SOURCE :
- 1
- SST_UPDATE :
- 1
- GHG_INPUT :
- 1
- GRID_FDDA :
- 0
- GFDDA_INTERVAL_M :
- 0
- GFDDA_END_H :
- 0
- GRID_SFDDA :
- 0
- SGFDDA_INTERVAL_M :
- 0
- SGFDDA_END_H :
- 0
- HYPSOMETRIC_OPT :
- 2
- USE_THETA_M :
- 1
- GWD_OPT :
- 0
- SF_URBAN_PHYSICS :
- 0
- SF_SURFACE_MOSAIC :
- 0
- SF_OCEAN_PHYSICS :
- 0
- WEST-EAST_PATCH_START_UNSTAG :
- 1
- WEST-EAST_PATCH_END_UNSTAG :
- 201
- WEST-EAST_PATCH_START_STAG :
- 1
- WEST-EAST_PATCH_END_STAG :
- 202
- SOUTH-NORTH_PATCH_START_UNSTAG :
- 1
- SOUTH-NORTH_PATCH_END_UNSTAG :
- 201
- SOUTH-NORTH_PATCH_START_STAG :
- 1
- SOUTH-NORTH_PATCH_END_STAG :
- 202
- BOTTOM-TOP_PATCH_START_UNSTAG :
- 1
- BOTTOM-TOP_PATCH_END_UNSTAG :
- 49
- BOTTOM-TOP_PATCH_START_STAG :
- 1
- BOTTOM-TOP_PATCH_END_STAG :
- 50
- GRID_ID :
- 3
- PARENT_ID :
- 2
- I_PARENT_START :
- 67
- J_PARENT_START :
- 67
- PARENT_GRID_RATIO :
- 3
- DT :
- 2.6666667
- CEN_LAT :
- 38.84523
- CEN_LON :
- -107.040375
- TRUELAT1 :
- 30.0
- TRUELAT2 :
- 50.0
- MOAD_CEN_LAT :
- 38.900017
- STAND_LON :
- -107.0
- POLE_LAT :
- 90.0
- POLE_LON :
- 0.0
- GMT :
- 0.0
- JULYR :
- 2022
- JULDAY :
- 17
- MAP_PROJ :
- 1
- MAP_PROJ_CHAR :
- Lambert Conformal
- MMINLU :
- MODIFIED_IGBP_MODIS_NOAH
- NUM_LAND_CAT :
- 21
- ISWATER :
- 17
- ISLAKE :
- 21
- ISICE :
- 15
- ISURBAN :
- 13
- ISOILWATER :
- 14
- HYBRID_OPT :
- 2
- ETAC :
- 0.2
- history :
- Sat Mar 25 11:57:59 2023: ncrcat /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-25_00:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-25_01:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-25_02:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-25_03:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-25_04:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-25_05:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-25_06:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-25_07:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-25_08:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-25_09:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-25_10:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-25_11:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-25_12:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-25_13:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-25_14:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-25_15:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-25_16:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-25_17:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-25_18:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-25_19:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-25_20:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-25_21:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-25_22:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_data/HOURLY_OUTPUT/wrfhourly_d03_2022-01-25_23:00:00 /global/cfs/projectdirs/m4098/WRF_WY22/bsu_cfsr22_shared/hourly/wrfhourly_d03_2022-01-25.nc
- NCO :
- netCDF Operators version 5.0.1 (Homepage = http://nco.sf.net, Code = http://github.com/nco/nco)
ds_bc["T2"].mean(dim=['x', 'y']).hvplot(xformatter=formatter)
ds_dust = xr.open_mfdataset(files_dust,concat_dim="Time",combine="nested").xwrf.postprocess().squeeze()
ds_dust
<xarray.Dataset> Size: 6GB Dimensions: (Time: 28, y: 201, x: 201, soil_layers_stag: 4, z: 49, x_stag: 202, y_stag: 202, z_stag: 50, seed_dim_stag: 2, snow_layers_stag: 3, snso_layers_stag: 7) Coordinates: (12/15) CLAT (y, x) float32 162kB dask.array<chunksize=(101, 101), meta=np.ndarray> XLAT (y, x) float32 162kB dask.array<chunksize=(101, 101), meta=np.ndarray> XLONG (y, x) float32 162kB dask.array<chunksize=(101, 101), meta=np.ndarray> XTIME (Time) datetime64[ns] 224B dask.array<chunksize=(1,), meta=np.ndarray> XLAT_U (y, x_stag) float32 162kB dask.array<chunksize=(101, 101), meta=np.ndarray> XLONG_U (y, x_stag) float32 162kB dask.array<chunksize=(101, 101), meta=np.ndarray> ... ... * z_stag (z_stag) float32 200B 1.0 0.9935 ... 0.006181 0.0 * Time (Time) datetime64[ns] 224B 2023-04-03 ... 2023... * x (x) float64 2kB -5.344e+04 ... 4.656e+04 * y (y) float64 2kB -5.6e+04 -5.55e+04 ... 4.4e+04 * y_stag (y_stag) float64 2kB -5.625e+04 ... 4.425e+04 * x_stag (x_stag) float64 2kB -5.369e+04 ... 4.681e+04 Dimensions without coordinates: soil_layers_stag, seed_dim_stag, snow_layers_stag, snso_layers_stag Data variables: (12/352) Times (Time) |S19 532B dask.array<chunksize=(1,), meta=np.ndarray> LU_INDEX (Time, y, x) float32 5MB dask.array<chunksize=(1, 101, 101), meta=np.ndarray> ZS (Time, soil_layers_stag) float32 448B dask.array<chunksize=(1, 4), meta=np.ndarray> DZS (Time, soil_layers_stag) float32 448B dask.array<chunksize=(1, 4), meta=np.ndarray> VAR_SSO (Time, y, x) float32 5MB dask.array<chunksize=(1, 101, 101), meta=np.ndarray> BATHYMETRY_FLAG (Time) int32 112B dask.array<chunksize=(1,), meta=np.ndarray> ... ... geopotential_height (Time, z_stag, y, x) float32 226MB dask.array<chunksize=(1, 50, 101, 101), meta=np.ndarray> wind_east (Time, z, y, x) float32 222MB dask.array<chunksize=(1, 49, 100, 100), meta=np.ndarray> wind_north (Time, z, y, x) float32 222MB dask.array<chunksize=(1, 49, 100, 100), meta=np.ndarray> wind_east_10 (Time, y, x) float32 5MB dask.array<chunksize=(1, 101, 101), meta=np.ndarray> wind_north_10 (Time, y, x) float32 5MB dask.array<chunksize=(1, 101, 101), meta=np.ndarray> wrf_projection object 8B +proj=lcc +x_0=0 +y_0=0 +a=6370000 +... Attributes: (12/153) TITLE: OUTPUT FROM WRF V4.4 MODEL START_DATE: 2023-03-25_00:00:00 SIMULATION_START_DATE: 2021-09-15_00:00:00 WEST-EAST_GRID_DIMENSION: 202 SOUTH-NORTH_GRID_DIMENSION: 202 BOTTOM-TOP_GRID_DIMENSION: 50 ... ... ISLAKE: 21 ISICE: 15 ISURBAN: 13 ISOILWATER: 14 HYBRID_OPT: 2 ETAC: 0.2
xarray.Dataset
- Time: 28
- y: 201
- x: 201
- soil_layers_stag: 4
- z: 49
- x_stag: 202
- y_stag: 202
- z_stag: 50
- seed_dim_stag: 2
- snow_layers_stag: 3
- snso_layers_stag: 7
- CLAT(y, x)float32dask.array<chunksize=(101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- COMPUTATIONAL GRID LATITUDE, SOUTH IS NEGATIVE
- units :
- degree_north
- stagger :
Array Chunk Bytes 157.82 kiB 39.85 kiB Shape (201, 201) (101, 101) Dask graph 4 chunks in 58 graph layers Data type float32 numpy.ndarray - XLAT(y, x)float32dask.array<chunksize=(101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- LATITUDE, SOUTH IS NEGATIVE
- units :
- degree_north
- stagger :
Array Chunk Bytes 157.82 kiB 39.85 kiB Shape (201, 201) (101, 101) Dask graph 4 chunks in 58 graph layers Data type float32 numpy.ndarray - XLONG(y, x)float32dask.array<chunksize=(101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- LONGITUDE, WEST IS NEGATIVE
- units :
- degree_east
- stagger :
Array Chunk Bytes 157.82 kiB 39.85 kiB Shape (201, 201) (101, 101) Dask graph 4 chunks in 58 graph layers Data type float32 numpy.ndarray - XTIME(Time)datetime64[ns]dask.array<chunksize=(1,), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- 0
- description :
- minutes since 2021-09-15 00:00:00
- stagger :
Array Chunk Bytes 224 B 8 B Shape (28,) (1,) Dask graph 28 chunks in 57 graph layers Data type datetime64[ns] numpy.ndarray - XLAT_U(y, x_stag)float32dask.array<chunksize=(101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- LATITUDE, SOUTH IS NEGATIVE
- units :
- degree_north
- stagger :
- X
Array Chunk Bytes 158.60 kiB 39.85 kiB Shape (201, 202) (101, 101) Dask graph 4 chunks in 58 graph layers Data type float32 numpy.ndarray - XLONG_U(y, x_stag)float32dask.array<chunksize=(101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- LONGITUDE, WEST IS NEGATIVE
- units :
- degree_east
- stagger :
- X
Array Chunk Bytes 158.60 kiB 39.85 kiB Shape (201, 202) (101, 101) Dask graph 4 chunks in 58 graph layers Data type float32 numpy.ndarray - XLAT_V(y_stag, x)float32dask.array<chunksize=(101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- LATITUDE, SOUTH IS NEGATIVE
- units :
- degree_north
- stagger :
- Y
Array Chunk Bytes 158.60 kiB 39.85 kiB Shape (202, 201) (101, 101) Dask graph 4 chunks in 58 graph layers Data type float32 numpy.ndarray - XLONG_V(y_stag, x)float32dask.array<chunksize=(101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- LONGITUDE, WEST IS NEGATIVE
- units :
- degree_east
- stagger :
- Y
Array Chunk Bytes 158.60 kiB 39.85 kiB Shape (202, 201) (101, 101) Dask graph 4 chunks in 58 graph layers Data type float32 numpy.ndarray - z(z)float320.9967 0.9893 ... 0.009443 0.003091
- FieldType :
- 104
- MemoryOrder :
- Z
- description :
- eta values on half (mass) levels
- units :
- stagger :
- axis :
- Z
- standard_name :
- atmosphere_hybrid_sigma_pressure_coordinate
array([0.996736, 0.989321, 0.979926, 0.968107, 0.953371, 0.935198, 0.913083, 0.886598, 0.855468, 0.819651, 0.779403, 0.735318, 0.690713, 0.648459, 0.608432, 0.570514, 0.534594, 0.500567, 0.468333, 0.437798, 0.408872, 0.38147 , 0.355512, 0.330922, 0.307628, 0.285562, 0.264658, 0.244856, 0.226097, 0.208327, 0.191494, 0.175547, 0.160441, 0.146131, 0.132575, 0.119733, 0.107568, 0.096044, 0.085128, 0.074786, 0.06499 , 0.05571 , 0.046919, 0.038591, 0.030702, 0.023229, 0.01615 , 0.009443, 0.003091], dtype=float32)
- z_stag(z_stag)float321.0 0.9935 0.9852 ... 0.006181 0.0
- FieldType :
- 104
- MemoryOrder :
- Z
- description :
- eta values on full (w) levels
- units :
- stagger :
- Z
- axis :
- Z
- c_grid_axis_shift :
- 0.5
- standard_name :
- atmosphere_hybrid_sigma_pressure_coordinate
array([1. , 0.993471, 0.98517 , 0.974682, 0.961533, 0.945209, 0.925186, 0.90098 , 0.872217, 0.83872 , 0.800582, 0.758224, 0.712412, 0.669015, 0.627904, 0.58896 , 0.552068, 0.51712 , 0.484014, 0.452652, 0.422943, 0.3948 , 0.36814 , 0.342884, 0.31896 , 0.296296, 0.274827, 0.254489, 0.235223, 0.216972, 0.199683, 0.183305, 0.16779 , 0.153092, 0.139169, 0.12598 , 0.113486, 0.10165 , 0.090438, 0.079817, 0.069756, 0.060225, 0.051196, 0.042642, 0.03454 , 0.026865, 0.019594, 0.012706, 0.006181, 0. ], dtype=float32)
- Time(Time)datetime64[ns]2023-04-03 ... 2023-04-09T18:00:00
- long_name :
- Time
- standard_name :
- time
array(['2023-04-03T00:00:00.000000000', '2023-04-03T06:00:00.000000000', '2023-04-03T12:00:00.000000000', '2023-04-03T18:00:00.000000000', '2023-04-04T00:00:00.000000000', '2023-04-04T06:00:00.000000000', '2023-04-04T12:00:00.000000000', '2023-04-04T18:00:00.000000000', '2023-04-05T00:00:00.000000000', '2023-04-05T06:00:00.000000000', '2023-04-05T12:00:00.000000000', '2023-04-05T18:00:00.000000000', '2023-04-06T00:00:00.000000000', '2023-04-06T06:00:00.000000000', '2023-04-06T12:00:00.000000000', '2023-04-06T18:00:00.000000000', '2023-04-07T00:00:00.000000000', '2023-04-07T06:00:00.000000000', '2023-04-07T12:00:00.000000000', '2023-04-07T18:00:00.000000000', '2023-04-08T00:00:00.000000000', '2023-04-08T06:00:00.000000000', '2023-04-08T12:00:00.000000000', '2023-04-08T18:00:00.000000000', '2023-04-09T00:00:00.000000000', '2023-04-09T06:00:00.000000000', '2023-04-09T12:00:00.000000000', '2023-04-09T18:00:00.000000000'], dtype='datetime64[ns]')
- x(x)float64-5.344e+04 -5.294e+04 ... 4.656e+04
- units :
- m
- standard_name :
- projection_x_coordinate
- axis :
- X
array([-53443.825943, -52943.825943, -52443.825943, ..., 45556.174057, 46056.174057, 46556.174057])
- y(y)float64-5.6e+04 -5.55e+04 ... 4.4e+04
- units :
- m
- standard_name :
- projection_y_coordinate
- axis :
- Y
array([-55999.217634, -55499.217634, -54999.217634, ..., 43000.782366, 43500.782366, 44000.782366])
- y_stag(y_stag)float64-5.625e+04 -5.575e+04 ... 4.425e+04
- units :
- m
- standard_name :
- projection_y_coordinate
- axis :
- Y
- c_grid_axis_shift :
- 0.5
array([-56249.217634, -55749.217634, -55249.217634, ..., 43250.782366, 43750.782366, 44250.782366])
- x_stag(x_stag)float64-5.369e+04 -5.319e+04 ... 4.681e+04
- units :
- m
- standard_name :
- projection_x_coordinate
- axis :
- X
- c_grid_axis_shift :
- 0.5
array([-53693.825943, -53193.825943, -52693.825943, ..., 45806.174057, 46306.174057, 46806.174057])
- Times(Time)|S19dask.array<chunksize=(1,), meta=np.ndarray>
Array Chunk Bytes 532 B 19 B Shape (28,) (1,) Dask graph 28 chunks in 57 graph layers Data type |S19 numpy.ndarray - LU_INDEX(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- LAND USE CATEGORY
- units :
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ZS(Time, soil_layers_stag)float32dask.array<chunksize=(1, 4), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- Z
- description :
- DEPTHS OF CENTERS OF SOIL LAYERS
- units :
- m
- stagger :
- Z
Array Chunk Bytes 448 B 16 B Shape (28, 4) (1, 4) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - DZS(Time, soil_layers_stag)float32dask.array<chunksize=(1, 4), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- Z
- description :
- THICKNESSES OF SOIL LAYERS
- units :
- m
- stagger :
- Z
Array Chunk Bytes 448 B 16 B Shape (28, 4) (1, 4) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - VAR_SSO(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Variance of Subgrid Scale Orography MSL
- units :
- m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - BATHYMETRY_FLAG(Time)int32dask.array<chunksize=(1,), meta=np.ndarray>
- FieldType :
- 106
- MemoryOrder :
- 0
- description :
- Flag for bathymetry in the global attributes for metgrid data
- stagger :
Array Chunk Bytes 112 B 4 B Shape (28,) (1,) Dask graph 28 chunks in 57 graph layers Data type int32 numpy.ndarray - U(Time, z, y, x_stag)float32dask.array<chunksize=(1, 49, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XYZ
- description :
- x-wind component
- units :
- m s-1
- stagger :
- X
- standard_name :
- x_wind
- grid_mapping :
- wrf_projection
Array Chunk Bytes 212.50 MiB 1.91 MiB Shape (28, 49, 201, 202) (1, 49, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - V(Time, z, y_stag, x)float32dask.array<chunksize=(1, 49, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XYZ
- description :
- y-wind component
- units :
- m s-1
- stagger :
- Y
- standard_name :
- y_wind
- grid_mapping :
- wrf_projection
Array Chunk Bytes 212.50 MiB 1.91 MiB Shape (28, 49, 202, 201) (1, 49, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - W(Time, z_stag, y, x)float32dask.array<chunksize=(1, 50, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XYZ
- description :
- z-wind component
- units :
- m s-1
- stagger :
- Z
- standard_name :
- upward_air_velocity
- grid_mapping :
- wrf_projection
Array Chunk Bytes 215.76 MiB 1.95 MiB Shape (28, 50, 201, 201) (1, 50, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - THM(Time, z, y, x)float32dask.array<chunksize=(1, 49, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XYZ
- description :
- either 1) pert moist pot temp=(1+Rv/Rd Qv)*(theta)-T0, or 2) pert dry pot temp=t
- units :
- K
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 211.45 MiB 1.91 MiB Shape (28, 49, 201, 201) (1, 49, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - HFX_FORCE(Time)float32dask.array<chunksize=(1,), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- 0
- description :
- SCM ideal surface sensible heat flux
- units :
- W m-2
- stagger :
Array Chunk Bytes 112 B 4 B Shape (28,) (1,) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - LH_FORCE(Time)float32dask.array<chunksize=(1,), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- 0
- description :
- SCM ideal surface latent heat flux
- units :
- W m-2
- stagger :
Array Chunk Bytes 112 B 4 B Shape (28,) (1,) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - TSK_FORCE(Time)float32dask.array<chunksize=(1,), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- 0
- description :
- SCM ideal surface skin temperature
- units :
- W m-2
- stagger :
Array Chunk Bytes 112 B 4 B Shape (28,) (1,) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - HFX_FORCE_TEND(Time)float32dask.array<chunksize=(1,), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- 0
- description :
- SCM ideal surface sensible heat flux tendency
- units :
- W m-2 s-1
- stagger :
Array Chunk Bytes 112 B 4 B Shape (28,) (1,) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - LH_FORCE_TEND(Time)float32dask.array<chunksize=(1,), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- 0
- description :
- SCM ideal surface latent heat flux tendency
- units :
- W m-2 s-1
- stagger :
Array Chunk Bytes 112 B 4 B Shape (28,) (1,) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - TSK_FORCE_TEND(Time)float32dask.array<chunksize=(1,), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- 0
- description :
- SCM ideal surface skin temperature tendency
- units :
- W m-2 s-1
- stagger :
Array Chunk Bytes 112 B 4 B Shape (28,) (1,) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - MU(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- perturbation dry air mass in column
- units :
- Pa
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - MUB(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- base state dry air mass in column
- units :
- Pa
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - NEST_POS(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- -
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - FNM(Time, z)float32dask.array<chunksize=(1, 49), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- Z
- description :
- upper weight for vertical stretching
- units :
- stagger :
Array Chunk Bytes 5.36 kiB 196 B Shape (28, 49) (1, 49) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - FNP(Time, z)float32dask.array<chunksize=(1, 49), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- Z
- description :
- lower weight for vertical stretching
- units :
- stagger :
Array Chunk Bytes 5.36 kiB 196 B Shape (28, 49) (1, 49) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - RDNW(Time, z)float32dask.array<chunksize=(1, 49), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- Z
- description :
- inverse d(eta) values between full (w) levels
- units :
- stagger :
Array Chunk Bytes 5.36 kiB 196 B Shape (28, 49) (1, 49) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - RDN(Time, z)float32dask.array<chunksize=(1, 49), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- Z
- description :
- inverse d(eta) values between half (mass) levels
- units :
- stagger :
Array Chunk Bytes 5.36 kiB 196 B Shape (28, 49) (1, 49) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - DNW(Time, z)float32dask.array<chunksize=(1, 49), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- Z
- description :
- d(eta) values between full (w) levels
- units :
- stagger :
Array Chunk Bytes 5.36 kiB 196 B Shape (28, 49) (1, 49) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - DN(Time, z)float32dask.array<chunksize=(1, 49), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- Z
- description :
- d(eta) values between half (mass) levels
- units :
- stagger :
Array Chunk Bytes 5.36 kiB 196 B Shape (28, 49) (1, 49) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - CFN(Time)float32dask.array<chunksize=(1,), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- 0
- description :
- extrapolation constant
- units :
- stagger :
Array Chunk Bytes 112 B 4 B Shape (28,) (1,) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - CFN1(Time)float32dask.array<chunksize=(1,), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- 0
- description :
- extrapolation constant
- units :
- stagger :
Array Chunk Bytes 112 B 4 B Shape (28,) (1,) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - THIS_IS_AN_IDEAL_RUN(Time)int32dask.array<chunksize=(1,), meta=np.ndarray>
- FieldType :
- 106
- MemoryOrder :
- 0
- description :
- T/F flag: this is an ARW ideal simulation
- stagger :
Array Chunk Bytes 112 B 4 B Shape (28,) (1,) Dask graph 28 chunks in 57 graph layers Data type int32 numpy.ndarray - P_HYD(Time, z, y, x)float32dask.array<chunksize=(1, 49, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XYZ
- description :
- hydrostatic pressure
- units :
- Pa
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 211.45 MiB 1.91 MiB Shape (28, 49, 201, 201) (1, 49, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - Q2(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- QV at 2 M
- units :
- kg kg-1
- stagger :
- standard_name :
- humidity_mixing_ratio
- long_name :
- humidity_mixing_ratio_at_2m_agl
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - T2(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- TEMP at 2 M
- units :
- K
- stagger :
- standard_name :
- air_temperature
- long_name :
- air_temperature_at_2m_agl
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - TH2(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- POT TEMP at 2 M
- units :
- K
- stagger :
- standard_name :
- air_potential_temperature
- long_name :
- air_potential_temperature_at_2m_agl
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - PSFC(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- SFC PRESSURE
- units :
- Pa
- stagger :
- standard_name :
- air_pressure
- long_name :
- air_pressure_at_surface
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - U10(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- U at 10 M
- units :
- m s-1
- stagger :
- standard_name :
- x_wind
- long_name :
- x_wind_at_10m_agl
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - V10(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- V at 10 M
- units :
- m s-1
- stagger :
- standard_name :
- y_wind
- long_name :
- y_wind_at_10m_agl
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - RDX(Time)float32dask.array<chunksize=(1,), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- 0
- description :
- INVERSE X GRID LENGTH
- units :
- m-1
- stagger :
Array Chunk Bytes 112 B 4 B Shape (28,) (1,) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - RDY(Time)float32dask.array<chunksize=(1,), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- 0
- description :
- INVERSE Y GRID LENGTH
- units :
- m-1
- stagger :
Array Chunk Bytes 112 B 4 B Shape (28,) (1,) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - AREA2D(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Horizontal grid cell area, using dx, dy, and map factors
- units :
- m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - DX2D(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Horizontal grid distance: sqrt(area2d)
- units :
- m
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - RESM(Time)float32dask.array<chunksize=(1,), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- 0
- description :
- TIME WEIGHT CONSTANT FOR SMALL STEPS
- units :
- stagger :
Array Chunk Bytes 112 B 4 B Shape (28,) (1,) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - ZETATOP(Time)float32dask.array<chunksize=(1,), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- 0
- description :
- ZETA AT MODEL TOP
- units :
- stagger :
Array Chunk Bytes 112 B 4 B Shape (28,) (1,) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - CF1(Time)float32dask.array<chunksize=(1,), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- 0
- description :
- 2nd order extrapolation constant
- units :
- stagger :
Array Chunk Bytes 112 B 4 B Shape (28,) (1,) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - CF2(Time)float32dask.array<chunksize=(1,), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- 0
- description :
- 2nd order extrapolation constant
- units :
- stagger :
Array Chunk Bytes 112 B 4 B Shape (28,) (1,) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - CF3(Time)float32dask.array<chunksize=(1,), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- 0
- description :
- 2nd order extrapolation constant
- units :
- stagger :
Array Chunk Bytes 112 B 4 B Shape (28,) (1,) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - ITIMESTEP(Time)int32dask.array<chunksize=(1,), meta=np.ndarray>
- FieldType :
- 106
- MemoryOrder :
- 0
- description :
- units :
- stagger :
Array Chunk Bytes 112 B 4 B Shape (28,) (1,) Dask graph 28 chunks in 57 graph layers Data type int32 numpy.ndarray - QVAPOR(Time, z, y, x)float32dask.array<chunksize=(1, 49, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XYZ
- description :
- Water vapor mixing ratio
- units :
- kg kg-1
- stagger :
- standard_name :
- humidity_mixing_ratio
- grid_mapping :
- wrf_projection
Array Chunk Bytes 211.45 MiB 1.91 MiB Shape (28, 49, 201, 201) (1, 49, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - QCLOUD(Time, z, y, x)float32dask.array<chunksize=(1, 49, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XYZ
- description :
- Cloud water mixing ratio
- units :
- kg kg-1
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 211.45 MiB 1.91 MiB Shape (28, 49, 201, 201) (1, 49, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - QRAIN(Time, z, y, x)float32dask.array<chunksize=(1, 49, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XYZ
- description :
- Rain water mixing ratio
- units :
- kg kg-1
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 211.45 MiB 1.91 MiB Shape (28, 49, 201, 201) (1, 49, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - QICE(Time, z, y, x)float32dask.array<chunksize=(1, 49, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XYZ
- description :
- Ice mixing ratio
- units :
- kg kg-1
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 211.45 MiB 1.91 MiB Shape (28, 49, 201, 201) (1, 49, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - QSNOW(Time, z, y, x)float32dask.array<chunksize=(1, 49, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XYZ
- description :
- Snow mixing ratio
- units :
- kg kg-1
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 211.45 MiB 1.91 MiB Shape (28, 49, 201, 201) (1, 49, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - QGRAUP(Time, z, y, x)float32dask.array<chunksize=(1, 49, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XYZ
- description :
- Graupel mixing ratio
- units :
- kg kg-1
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 211.45 MiB 1.91 MiB Shape (28, 49, 201, 201) (1, 49, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - QNICE(Time, z, y, x)float32dask.array<chunksize=(1, 49, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XYZ
- description :
- Ice Number concentration
- units :
- kg-1
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 211.45 MiB 1.91 MiB Shape (28, 49, 201, 201) (1, 49, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - QNRAIN(Time, z, y, x)float32dask.array<chunksize=(1, 49, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XYZ
- description :
- Rain Number concentration
- units :
- kg-1
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 211.45 MiB 1.91 MiB Shape (28, 49, 201, 201) (1, 49, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - SHDMAX(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- ANNUAL MAX VEG FRACTION
- units :
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - SHDMIN(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- ANNUAL MIN VEG FRACTION
- units :
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - SNOALB(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- ANNUAL MAX SNOW ALBEDO IN FRACTION
- units :
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - TSLB(Time, soil_layers_stag, y, x)float32dask.array<chunksize=(1, 4, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XYZ
- description :
- SOIL TEMPERATURE
- units :
- K
- stagger :
- Z
- grid_mapping :
- wrf_projection
Array Chunk Bytes 17.26 MiB 159.39 kiB Shape (28, 4, 201, 201) (1, 4, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - SMOIS(Time, soil_layers_stag, y, x)float32dask.array<chunksize=(1, 4, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XYZ
- description :
- SOIL MOISTURE
- units :
- m3 m-3
- stagger :
- Z
- grid_mapping :
- wrf_projection
Array Chunk Bytes 17.26 MiB 159.39 kiB Shape (28, 4, 201, 201) (1, 4, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - SH2O(Time, soil_layers_stag, y, x)float32dask.array<chunksize=(1, 4, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XYZ
- description :
- SOIL LIQUID WATER
- units :
- m3 m-3
- stagger :
- Z
- grid_mapping :
- wrf_projection
Array Chunk Bytes 17.26 MiB 159.39 kiB Shape (28, 4, 201, 201) (1, 4, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - SEAICE(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- SEA ICE FLAG
- units :
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - XICEM(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- SEA ICE FLAG (PREVIOUS STEP)
- units :
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - SFROFF(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- SURFACE RUNOFF
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - UDROFF(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- UNDERGROUND RUNOFF
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - IVGTYP(Time, y, x)int32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 106
- MemoryOrder :
- XY
- description :
- DOMINANT VEGETATION CATEGORY
- units :
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type int32 numpy.ndarray - ISLTYP(Time, y, x)int32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 106
- MemoryOrder :
- XY
- description :
- DOMINANT SOIL CATEGORY
- units :
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type int32 numpy.ndarray - VEGFRA(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- VEGETATION FRACTION
- units :
- stagger :
- standard_name :
- vegetation_area_fraction
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - GRDFLX(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- GROUND HEAT FLUX
- units :
- W m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACGRDFLX(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- ACCUMULATED GROUND HEAT FLUX
- units :
- J m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACSNOM(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- ACCUMULATED MELTED SNOW
- units :
- kg m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - SNOW(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- SNOW WATER EQUIVALENT
- units :
- kg m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - SNOWH(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- PHYSICAL SNOW DEPTH
- units :
- m
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - CANWAT(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- CANOPY WATER
- units :
- kg m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - SSTSK(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- SKIN SEA SURFACE TEMPERATURE
- units :
- K
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - WATER_DEPTH(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- global water depth
- units :
- m
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - COSZEN(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- COS of SOLAR ZENITH ANGLE
- units :
- 1
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - LAI(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- LEAF AREA INDEX
- units :
- m-2/m-2
- stagger :
- standard_name :
- leaf_area_index
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - U10E(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Special U at 10 M from MYJSFC
- units :
- m s-1
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - V10E(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Special V at 10 M from MYJSFC
- units :
- m s-1
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - VAR(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- STANDARD DEVIATION OF SUBGRID-SCALE OROGRAPHY
- units :
- m
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - TKE_PBL(Time, z_stag, y, x)float32dask.array<chunksize=(1, 50, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XYZ
- description :
- TKE from PBL
- units :
- m2 s-2
- stagger :
- Z
- grid_mapping :
- wrf_projection
Array Chunk Bytes 215.76 MiB 1.95 MiB Shape (28, 50, 201, 201) (1, 50, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - EL_PBL(Time, z_stag, y, x)float32dask.array<chunksize=(1, 50, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XYZ
- description :
- Length scale from PBL
- units :
- m
- stagger :
- Z
- grid_mapping :
- wrf_projection
Array Chunk Bytes 215.76 MiB 1.95 MiB Shape (28, 50, 201, 201) (1, 50, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - MAPFAC_M(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Map scale factor on mass grid
- units :
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - MAPFAC_U(Time, y, x_stag)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Map scale factor on u-grid
- units :
- stagger :
- X
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.34 MiB 39.85 kiB Shape (28, 201, 202) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - MAPFAC_V(Time, y_stag, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Map scale factor on v-grid
- units :
- stagger :
- Y
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.34 MiB 39.85 kiB Shape (28, 202, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - MAPFAC_MX(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Map scale factor on mass grid, x direction
- units :
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - MAPFAC_MY(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Map scale factor on mass grid, y direction
- units :
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - MAPFAC_UX(Time, y, x_stag)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Map scale factor on u-grid, x direction
- units :
- stagger :
- X
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.34 MiB 39.85 kiB Shape (28, 201, 202) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - MAPFAC_UY(Time, y, x_stag)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Map scale factor on u-grid, y direction
- units :
- stagger :
- X
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.34 MiB 39.85 kiB Shape (28, 201, 202) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - MAPFAC_VX(Time, y_stag, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Map scale factor on v-grid, x direction
- units :
- stagger :
- Y
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.34 MiB 39.85 kiB Shape (28, 202, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - MF_VX_INV(Time, y_stag, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Inverse map scale factor on v-grid, x direction
- units :
- stagger :
- Y
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.34 MiB 39.85 kiB Shape (28, 202, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - MAPFAC_VY(Time, y_stag, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Map scale factor on v-grid, y direction
- units :
- stagger :
- Y
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.34 MiB 39.85 kiB Shape (28, 202, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - F(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Coriolis sine latitude term
- units :
- s-1
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - E(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Coriolis cosine latitude term
- units :
- s-1
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - SINALPHA(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Local sine of map rotation
- units :
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - COSALPHA(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Local cosine of map rotation
- units :
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - HGT(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Terrain Height
- units :
- m
- stagger :
- standard_name :
- surface_altitude
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - TSK(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- SURFACE SKIN TEMPERATURE
- units :
- K
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - P_TOP(Time)float32dask.array<chunksize=(1,), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- 0
- description :
- PRESSURE TOP OF THE MODEL
- units :
- Pa
- stagger :
Array Chunk Bytes 112 B 4 B Shape (28,) (1,) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - GOT_VAR_SSO(Time)int32dask.array<chunksize=(1,), meta=np.ndarray>
- FieldType :
- 106
- MemoryOrder :
- 0
- description :
- whether VAR_SSO was included in WPS output (beginning V3.4)
- units :
- stagger :
Array Chunk Bytes 112 B 4 B Shape (28,) (1,) Dask graph 28 chunks in 57 graph layers Data type int32 numpy.ndarray - T00(Time)float32dask.array<chunksize=(1,), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- 0
- description :
- BASE STATE TEMPERATURE
- units :
- K
- stagger :
Array Chunk Bytes 112 B 4 B Shape (28,) (1,) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - P00(Time)float32dask.array<chunksize=(1,), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- 0
- description :
- BASE STATE PRESSURE
- units :
- Pa
- stagger :
Array Chunk Bytes 112 B 4 B Shape (28,) (1,) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - TLP(Time)float32dask.array<chunksize=(1,), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- 0
- description :
- BASE STATE LAPSE RATE
- units :
- stagger :
Array Chunk Bytes 112 B 4 B Shape (28,) (1,) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - TISO(Time)float32dask.array<chunksize=(1,), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- 0
- description :
- TEMP AT WHICH THE BASE T TURNS CONST
- units :
- K
- stagger :
Array Chunk Bytes 112 B 4 B Shape (28,) (1,) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - TLP_STRAT(Time)float32dask.array<chunksize=(1,), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- 0
- description :
- BASE STATE LAPSE RATE (DT/D(LN(P)) IN STRATOSPHERE
- units :
- K
- stagger :
Array Chunk Bytes 112 B 4 B Shape (28,) (1,) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - P_STRAT(Time)float32dask.array<chunksize=(1,), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- 0
- description :
- BASE STATE PRESSURE AT BOTTOM OF STRATOSPHERE
- units :
- Pa
- stagger :
Array Chunk Bytes 112 B 4 B Shape (28,) (1,) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - MAX_MSFTX(Time)float32dask.array<chunksize=(1,), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- 0
- description :
- Max map factor in domain
- units :
- stagger :
Array Chunk Bytes 112 B 4 B Shape (28,) (1,) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - MAX_MSFTY(Time)float32dask.array<chunksize=(1,), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- 0
- description :
- Max map factor in domain
- units :
- stagger :
Array Chunk Bytes 112 B 4 B Shape (28,) (1,) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - RAINC(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- ACCUMULATED TOTAL CUMULUS PRECIPITATION
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - RAINSH(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- ACCUMULATED SHALLOW CUMULUS PRECIPITATION
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - RAINNC(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- ACCUMULATED TOTAL GRID SCALE PRECIPITATION
- units :
- mm
- stagger :
- standard_name :
- integral_of_lwe_precipitation_rate_wrt_time
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - SNOWNC(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- ACCUMULATED TOTAL GRID SCALE SNOW AND ICE
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - GRAUPELNC(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- ACCUMULATED TOTAL GRID SCALE GRAUPEL
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - HAILNC(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- ACCUMULATED TOTAL GRID SCALE HAIL
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - CLDFRA(Time, z, y, x)float32dask.array<chunksize=(1, 49, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XYZ
- description :
- CLOUD FRACTION
- units :
- stagger :
- standard_name :
- cloud_area_fraction_in_atmosphere_layer
- grid_mapping :
- wrf_projection
Array Chunk Bytes 211.45 MiB 1.91 MiB Shape (28, 49, 201, 201) (1, 49, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - SWDOWN(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- DOWNWARD SHORT WAVE FLUX AT GROUND SURFACE
- units :
- W m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - GLW(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- DOWNWARD LONG WAVE FLUX AT GROUND SURFACE
- units :
- W m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - SWNORM(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- NORMAL SHORT WAVE FLUX AT GROUND SURFACE (SLOPE-DEPENDENT)
- units :
- W m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACSWUPT(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- ACCUMULATED UPWELLING SHORTWAVE FLUX AT TOP
- units :
- J m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACSWUPTC(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- ACCUMULATED UPWELLING CLEAR SKY SHORTWAVE FLUX AT TOP
- units :
- J m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACSWDNT(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- ACCUMULATED DOWNWELLING SHORTWAVE FLUX AT TOP
- units :
- J m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACSWDNTC(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- ACCUMULATED DOWNWELLING CLEAR SKY SHORTWAVE FLUX AT TOP
- units :
- J m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACSWUPB(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- ACCUMULATED UPWELLING SHORTWAVE FLUX AT BOTTOM
- units :
- J m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACSWUPBC(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- ACCUMULATED UPWELLING CLEAR SKY SHORTWAVE FLUX AT BOTTOM
- units :
- J m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACSWDNB(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- ACCUMULATED DOWNWELLING SHORTWAVE FLUX AT BOTTOM
- units :
- J m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACSWDNBC(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- ACCUMULATED DOWNWELLING CLEAR SKY SHORTWAVE FLUX AT BOTTOM
- units :
- J m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACLWUPT(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- ACCUMULATED UPWELLING LONGWAVE FLUX AT TOP
- units :
- J m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACLWUPTC(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- ACCUMULATED UPWELLING CLEAR SKY LONGWAVE FLUX AT TOP
- units :
- J m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACLWDNT(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- ACCUMULATED DOWNWELLING LONGWAVE FLUX AT TOP
- units :
- J m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACLWDNTC(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- ACCUMULATED DOWNWELLING CLEAR SKY LONGWAVE FLUX AT TOP
- units :
- J m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACLWUPB(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- ACCUMULATED UPWELLING LONGWAVE FLUX AT BOTTOM
- units :
- J m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACLWUPBC(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- ACCUMULATED UPWELLING CLEAR SKY LONGWAVE FLUX AT BOTTOM
- units :
- J m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACLWDNB(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- ACCUMULATED DOWNWELLING LONGWAVE FLUX AT BOTTOM
- units :
- J m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACLWDNBC(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- ACCUMULATED DOWNWELLING CLEAR SKY LONGWAVE FLUX AT BOTTOM
- units :
- J m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - SWUPT(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- INSTANTANEOUS UPWELLING SHORTWAVE FLUX AT TOP
- units :
- W m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - SWUPTC(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- INSTANTANEOUS UPWELLING CLEAR SKY SHORTWAVE FLUX AT TOP
- units :
- W m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - SWDNT(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- INSTANTANEOUS DOWNWELLING SHORTWAVE FLUX AT TOP
- units :
- W m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - SWDNTC(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- INSTANTANEOUS DOWNWELLING CLEAR SKY SHORTWAVE FLUX AT TOP
- units :
- W m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - SWUPB(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- INSTANTANEOUS UPWELLING SHORTWAVE FLUX AT BOTTOM
- units :
- W m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - SWUPBC(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- INSTANTANEOUS UPWELLING CLEAR SKY SHORTWAVE FLUX AT BOTTOM
- units :
- W m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - SWDNB(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- INSTANTANEOUS DOWNWELLING SHORTWAVE FLUX AT BOTTOM
- units :
- W m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - SWDNBC(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- INSTANTANEOUS DOWNWELLING CLEAR SKY SHORTWAVE FLUX AT BOTTOM
- units :
- W m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - LWUPT(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- INSTANTANEOUS UPWELLING LONGWAVE FLUX AT TOP
- units :
- W m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - LWUPTC(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- INSTANTANEOUS UPWELLING CLEAR SKY LONGWAVE FLUX AT TOP
- units :
- W m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - LWDNT(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- INSTANTANEOUS DOWNWELLING LONGWAVE FLUX AT TOP
- units :
- W m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - LWDNTC(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- INSTANTANEOUS DOWNWELLING CLEAR SKY LONGWAVE FLUX AT TOP
- units :
- W m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - LWUPB(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- INSTANTANEOUS UPWELLING LONGWAVE FLUX AT BOTTOM
- units :
- W m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - LWUPBC(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- INSTANTANEOUS UPWELLING CLEAR SKY LONGWAVE FLUX AT BOTTOM
- units :
- W m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - LWDNB(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- INSTANTANEOUS DOWNWELLING LONGWAVE FLUX AT BOTTOM
- units :
- W m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - LWDNBC(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- INSTANTANEOUS DOWNWELLING CLEAR SKY LONGWAVE FLUX AT BOTTOM
- units :
- W m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - OLR(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- TOA OUTGOING LONG WAVE
- units :
- W m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ALBEDO(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- ALBEDO
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ALBBCK(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- BACKGROUND ALBEDO
- units :
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - EMISS(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- SURFACE EMISSIVITY
- units :
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - NOAHRES(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- RESIDUAL OF THE NOAH SURFACE ENERGY BUDGET
- units :
- W m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - TMN(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- SOIL TEMPERATURE AT LOWER BOUNDARY
- units :
- K
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - XLAND(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- LAND MASK (1 FOR LAND, 2 FOR WATER)
- units :
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - UST(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- U* IN SIMILARITY THEORY
- units :
- m s-1
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - PBLH(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- PBL HEIGHT
- units :
- m
- stagger :
- standard_name :
- atmosphere_boundary_layer_thickness
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - HFX(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- UPWARD HEAT FLUX AT THE SURFACE
- units :
- W m-2
- stagger :
- standard_name :
- surface_upward_heat_flux_in_air
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - QFX(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- UPWARD MOISTURE FLUX AT THE SURFACE
- units :
- kg m-2 s-1
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - LH(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- LATENT HEAT FLUX AT THE SURFACE
- units :
- W m-2
- stagger :
- standard_name :
- surface_upward_latent_heat_flux_in_air
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACHFX(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- ACCUMULATED UPWARD HEAT FLUX AT THE SURFACE
- units :
- J m-2
- stagger :
- standard_name :
- integral_of_surface_upward_heat_flux_in_air_wrt_time
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACLHF(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- ACCUMULATED UPWARD LATENT HEAT FLUX AT THE SURFACE
- units :
- J m-2
- stagger :
- standard_name :
- integral_of_surface_upward_latent_heat_flux_in_air_wrf_time
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - SNOWC(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- FLAG INDICATING SNOW COVERAGE (1 FOR SNOW COVER)
- units :
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - SR(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- fraction of frozen precipitation
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - SAVE_TOPO_FROM_REAL(Time)int32dask.array<chunksize=(1,), meta=np.ndarray>
- FieldType :
- 106
- MemoryOrder :
- 0
- description :
- 1=original topo from real/0=topo modified by WRF
- stagger :
Array Chunk Bytes 112 B 4 B Shape (28,) (1,) Dask graph 28 chunks in 57 graph layers Data type int32 numpy.ndarray - ISEEDARR_SPPT(Time, seed_dim_stag)int32dask.array<chunksize=(1, 2), meta=np.ndarray>
- FieldType :
- 106
- MemoryOrder :
- Z
- description :
- Array to hold seed for restart, SPPT
- units :
- stagger :
- Z
Array Chunk Bytes 224 B 8 B Shape (28, 2) (1, 2) Dask graph 28 chunks in 57 graph layers Data type int32 numpy.ndarray - ISEEDARR_SKEBS(Time, seed_dim_stag)int32dask.array<chunksize=(1, 2), meta=np.ndarray>
- FieldType :
- 106
- MemoryOrder :
- Z
- description :
- Array to hold seed for restart, SKEBS
- units :
- stagger :
- Z
Array Chunk Bytes 224 B 8 B Shape (28, 2) (1, 2) Dask graph 28 chunks in 57 graph layers Data type int32 numpy.ndarray - ISEEDARR_RAND_PERTURB(Time, seed_dim_stag)int32dask.array<chunksize=(1, 2), meta=np.ndarray>
- FieldType :
- 106
- MemoryOrder :
- Z
- description :
- Array to hold seed for restart, RAND_PERT
- units :
- stagger :
- Z
Array Chunk Bytes 224 B 8 B Shape (28, 2) (1, 2) Dask graph 28 chunks in 57 graph layers Data type int32 numpy.ndarray - ISEEDARRAY_SPP_CONV(Time, seed_dim_stag)int32dask.array<chunksize=(1, 2), meta=np.ndarray>
- FieldType :
- 106
- MemoryOrder :
- Z
- description :
- Array to hold seed for restart, RAND_PERT2
- units :
- stagger :
- Z
Array Chunk Bytes 224 B 8 B Shape (28, 2) (1, 2) Dask graph 28 chunks in 57 graph layers Data type int32 numpy.ndarray - ISEEDARRAY_SPP_PBL(Time, seed_dim_stag)int32dask.array<chunksize=(1, 2), meta=np.ndarray>
- FieldType :
- 106
- MemoryOrder :
- Z
- description :
- Array to hold seed for restart, RAND_PERT3
- units :
- stagger :
- Z
Array Chunk Bytes 224 B 8 B Shape (28, 2) (1, 2) Dask graph 28 chunks in 57 graph layers Data type int32 numpy.ndarray - ISEEDARRAY_SPP_LSM(Time, seed_dim_stag)int32dask.array<chunksize=(1, 2), meta=np.ndarray>
- FieldType :
- 106
- MemoryOrder :
- Z
- description :
- Array to hold seed for restart, RAND_PERT4
- units :
- stagger :
- Z
Array Chunk Bytes 224 B 8 B Shape (28, 2) (1, 2) Dask graph 28 chunks in 57 graph layers Data type int32 numpy.ndarray - ISNOW(Time, y, x)int32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 106
- MemoryOrder :
- XY
- description :
- no. of snow layer
- units :
- m3 m-3
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type int32 numpy.ndarray - TV(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- vegetation leaf temperature
- units :
- K
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - TG(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- bulk ground temperature
- units :
- K
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - CANICE(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- intercepted ice mass
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - CANLIQ(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- intercepted liquid water
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - EAH(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- canopy air vapor pressure
- units :
- pa
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - TAH(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- canopy air temperature
- units :
- K
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - CM(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- surf. exchange coeff. for momentum
- units :
- m/s
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - CH(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- surf. exchange coeff. for heat
- units :
- m/s
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - FWET(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- wetted or snowed canopy fraction
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - SNEQVO(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- snow mass at last time step
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ALBOLD(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- snow albedo at last timestep
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - QSNOWXY(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- snowfall on the ground
- units :
- mm/s
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - QRAINXY(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- rainfall on the ground
- units :
- mm/s
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - WSLAKE(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- lake water storage
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ZWT(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- water table depth
- units :
- m
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - WA(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- water in the acquifer
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - WT(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- groundwater storage
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - TSNO(Time, snow_layers_stag, y, x)float32dask.array<chunksize=(1, 3, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XYZ
- description :
- snow temperature
- units :
- K
- stagger :
- Z
- grid_mapping :
- wrf_projection
Array Chunk Bytes 12.95 MiB 119.54 kiB Shape (28, 3, 201, 201) (1, 3, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ZSNSO(Time, snso_layers_stag, y, x)float32dask.array<chunksize=(1, 7, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XYZ
- description :
- layer-bottom depth from snow surf
- units :
- m
- stagger :
- Z
- grid_mapping :
- wrf_projection
Array Chunk Bytes 30.21 MiB 278.93 kiB Shape (28, 7, 201, 201) (1, 7, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - SNICE(Time, snow_layers_stag, y, x)float32dask.array<chunksize=(1, 3, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XYZ
- description :
- snow layer ice
- units :
- mm
- stagger :
- Z
- grid_mapping :
- wrf_projection
Array Chunk Bytes 12.95 MiB 119.54 kiB Shape (28, 3, 201, 201) (1, 3, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - SNLIQ(Time, snow_layers_stag, y, x)float32dask.array<chunksize=(1, 3, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XYZ
- description :
- snow layer liquid
- units :
- mm
- stagger :
- Z
- grid_mapping :
- wrf_projection
Array Chunk Bytes 12.95 MiB 119.54 kiB Shape (28, 3, 201, 201) (1, 3, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - LFMASS(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- leaf mass
- units :
- g/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - RTMASS(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- mass of fine roots
- units :
- g/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - STMASS(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- stem mass
- units :
- g/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - WOOD(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- mass of wood
- units :
- g/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - STBLCP(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- stable carbon pool
- units :
- g/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - FASTCP(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- short-lived carbon
- units :
- g/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - XSAI(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- stem area index
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - TAUSS(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- non-dimensional snow age
- units :
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - T2V(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- 2 meter temperature over canopy
- units :
- K
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - T2B(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- 2 meter temperature over bare ground
- units :
- K
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - Q2V(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- 2 meter mixing ratio over canopy
- units :
- kg kg-1
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - Q2B(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- 2 meter mixing ratio over bare ground
- units :
- kg kg-1
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - TRAD(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- surface radiative temperature
- units :
- K
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - NEE(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- net ecosystem exchange
- units :
- g m-2 s-1
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - GPP(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- gross primary productivity
- units :
- g m-2 s-1
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - NPP(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- net primary productivity
- units :
- g m-2 s-1
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - FVEG(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Noah-MP vegetation fraction
- units :
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - QIN(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- groundwater recharge
- units :
- mm/s
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - RUNSF(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- surface runoff
- units :
- mm/s
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - RUNSB(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- subsurface runoff
- units :
- mm/s
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ECAN(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- evaporation of intercepted water
- units :
- mm/s
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - EDIR(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- ground surface evaporation rate
- units :
- mm/s
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ETRAN(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- transpiration rate
- units :
- mm/s
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - FSA(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- total absorbed solar radiation
- units :
- W/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - FIRA(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- total net longwave rad
- units :
- W/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - APAR(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- photosyn active energy by canopy
- units :
- W/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - PSN(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- total photosynthesis
- units :
- umol m-2 s-1
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - SAV(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- solar rad absorbed by veg
- units :
- W/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - SAG(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- solar rad absorbed by ground
- units :
- W/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - RSSUN(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- sunlit stomatal resistance
- units :
- s/m
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - RSSHA(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- shaded stomatal resistance
- units :
- s/m
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - BGAP(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- between canopy gap
- units :
- 1
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - WGAP(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- within canopy gap
- units :
- 1
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - TGV(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- ground temp. under canopy
- units :
- K
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - TGB(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- bare ground temperature
- units :
- K
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - CHV(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- vegetated heat exchange coefficient
- units :
- m/s
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - CHB(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- bare-ground heat exchange coefficient
- units :
- m/s
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - SHG(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- sensible heat flux: ground to canopy
- units :
- W/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - SHC(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- sensible heat flux: leaf to canopy
- units :
- W/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - SHB(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- sensible heat flux: bare grnd to atmo
- units :
- W/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - EVG(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- latent heat flux: ground to canopy
- units :
- W/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - EVB(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- latent heat flux: bare grnd to atmo
- units :
- W/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - GHV(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- heat flux into soil: under canopy
- units :
- W/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - GHB(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- heat flux into soil: bare fraction
- units :
- W/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - IRG(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- net longwave at below canopy surface
- units :
- W/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - IRC(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- net longwave in canopy
- units :
- W/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - IRB(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- net longwave at bare fraction surface
- units :
- W/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - TR(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- transpiration
- units :
- W/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - EVC(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- canopy evaporation
- units :
- W/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - CHLEAF(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- leaf exchange coefficient
- units :
- m/s
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - CHUC(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- under canopy exchange coefficient
- units :
- m/s
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - CHV2(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- leaf exchange coefficient
- units :
- m/s
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - CHB2(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- under canopy exchange coefficient
- units :
- m/s
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - CHSTAR(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- dummy exchange coefficient
- units :
- m/s
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - SMCWTD(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- deep soil moisture
- units :
- m3 m-3
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - RECH(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- water table recharge
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - QRFS(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- sum baseflow
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - QSPRINGS(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- sum seeping water
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - QSLAT(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- sum lateral flow
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACINTS(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated canopy snow interception
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACINTR(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated canopy rain interception
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACDRIPR(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated canopy rain drip
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACTHROR(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated rain throughfall
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACEVAC(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated canopy evaporation
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACDEWC(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated canopy dew
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - FORCTLSM(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- lowest model T into LSM
- units :
- K
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - FORCQLSM(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- lowest model Q into LSM
- units :
- kg/kg
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - FORCPLSM(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- lowest model P into LSM
- units :
- Pa
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - FORCZLSM(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- lowest model Z into LSM
- units :
- m
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - FORCWLSM(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- lowest model wind speed into LSM
- units :
- m/s
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACRAINLSM(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated liquid precipitation into LSM
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACRUNSB(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated subsurface runoff
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACRUNSF(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated surface runoff
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACECAN(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated evaporation of intercepted water
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACETRAN(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated transpiration
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACEDIR(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated ground surface evaporation
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACQLAT(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- accumulated lateral flow
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACQRF(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- accumulated baseflow
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACETLSM(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated evaporation
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACSNOWLSM(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated frozen precipitation into LSM
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACSUBC(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated canopy sublimation
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACFROC(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated canopy frost
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACFRZC(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated canopy liquid freeze
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACMELTC(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated canopy snow melt
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACSNBOT(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated total liquid water (melt + rain through pack) out of snowpack bottom
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACSNMELT(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated snowmelt due to phase change
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACPONDING(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated surface ponding from complete pack melt
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACSNSUB(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated snow pack sublimation
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACSNFRO(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated snow pack frost
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACRAINSNOW(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- accumulated rain on snow pack
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACDRIPS(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated canopy snow drip
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACTHROS(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated snow throughfall
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACSAGB(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated solar radiation absorbed at bare fraction
- units :
- kJ/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACIRB(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated net longwave at bare fraction
- units :
- kJ/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACSHB(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated sensible heat flux at bare fraction
- units :
- kJ/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACEVB(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated latent heat flux at bare fraction
- units :
- kJ/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACGHB(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated heat flux into soil at bare fraction
- units :
- kJ/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACPAHB(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated precipitation advected energy to bare ground
- units :
- kJ/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACSAGV(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated solar radiation absorbed at vegetated fraction
- units :
- kJ/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACIRG(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated net longwave below canopy surface
- units :
- kJ/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACSHG(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated sensible heat flux: ground to canopy
- units :
- kJ/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACEVG(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated latent heat flux: ground to canopy
- units :
- kJ/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACGHV(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated heat flux into soil under canopy
- units :
- kJ/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACPAHG(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated precipitation advected energy to below canopy
- units :
- kJ/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACSAV(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated solar rad absorbed by vegetated fraction
- units :
- kJ/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACIRC(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated net longwave in canopy
- units :
- kJ/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACSHC(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated sensible heat flux: canopy to atmosphere
- units :
- kJ/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACEVC(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated canopy evaporation
- units :
- kJ/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACTR(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated transpiration
- units :
- kJ/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACPAHV(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated precipitation advected energy to vegetation
- units :
- kJ/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACSWDNLSM(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated shortwave down at LSM
- units :
- kJ/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACSWUPLSM(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated shortwave up at LSM
- units :
- kJ/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACLWDNLSM(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated longwave down at LSM
- units :
- kJ/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACLWUPLSM(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated longwave up at LSM
- units :
- kJ/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACSHFLSM(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- accumulated total sensible heat flux
- units :
- kJ/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACLHFLSM(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- accumulated total latent heat flux
- units :
- kJ/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACGHFLSM(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- accumulated total ground heat flux
- units :
- kJ/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACPAHLSM(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- accumulated total precip heat flux
- units :
- kJ/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACCANHS(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- accumulated canopy storage change
- units :
- kJ m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - SOILENERGY(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- energy content in soil relative to 273.16
- units :
- kJ/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - SNOWENERGY(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- energy content in snow relative to 273.16
- units :
- kJ/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - ACEFLXB(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- accumulated bottom soil heat flux
- units :
- kJ/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - GRAIN(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- mass of grain
- units :
- g/m2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - GDD(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- growing degree days
- units :
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - CROPCAT(Time, y, x)int32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 106
- MemoryOrder :
- XY
- description :
- dominant crop category
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type int32 numpy.ndarray - PGS(Time, y, x)int32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 106
- MemoryOrder :
- XY
- description :
- pgs
- units :
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type int32 numpy.ndarray - QTDRAIN(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Accumulated tile drainage flux
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - IRNUMSI(Time, y, x)int32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 106
- MemoryOrder :
- XY
- description :
- Sprinkler Irrigation Event Count
- units :
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type int32 numpy.ndarray - IRNUMMI(Time, y, x)int32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 106
- MemoryOrder :
- XY
- description :
- Micro Irrigation Event Count
- units :
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type int32 numpy.ndarray - IRNUMFI(Time, y, x)int32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 106
- MemoryOrder :
- XY
- description :
- Flood Irrigation Event Count
- units :
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type int32 numpy.ndarray - IRSIVOL(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Sprinkler Irrigation Water Accumulated
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - IRMIVOL(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Micro Irrigation Water Accumulated
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - IRFIVOL(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Flood Irrigation Water Accumulated
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - IRELOSS(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Sprinkler Evaporation Loss Accumulated
- units :
- mm
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - IRRSPLH(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- Sprinkler Evaporation Loss Accumulated
- units :
- J m-2
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - C1H(Time, z)float32dask.array<chunksize=(1, 49), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- Z
- description :
- half levels, c1h = d bf / d eta, using znw
- units :
- 1
- stagger :
Array Chunk Bytes 5.36 kiB 196 B Shape (28, 49) (1, 49) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - C2H(Time, z)float32dask.array<chunksize=(1, 49), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- Z
- description :
- half levels, c2h = (1-c1h)*(p0-pt)
- units :
- Pa
- stagger :
Array Chunk Bytes 5.36 kiB 196 B Shape (28, 49) (1, 49) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - C1F(Time, z_stag)float32dask.array<chunksize=(1, 50), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- Z
- description :
- full levels, c1f = d bf / d eta, using znu
- units :
- 1
- stagger :
- Z
Array Chunk Bytes 5.47 kiB 200 B Shape (28, 50) (1, 50) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - C2F(Time, z_stag)float32dask.array<chunksize=(1, 50), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- Z
- description :
- full levels, c2f = (1-c1f)*(p0-pt)
- units :
- Pa
- stagger :
- Z
Array Chunk Bytes 5.47 kiB 200 B Shape (28, 50) (1, 50) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - C3H(Time, z)float32dask.array<chunksize=(1, 49), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- Z
- description :
- half levels, c3h = bh
- units :
- 1
- stagger :
Array Chunk Bytes 5.36 kiB 196 B Shape (28, 49) (1, 49) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - C4H(Time, z)float32dask.array<chunksize=(1, 49), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- Z
- description :
- half levels, c4h = (eta-bh)*(p0-pt), using znu
- units :
- Pa
- stagger :
Array Chunk Bytes 5.36 kiB 196 B Shape (28, 49) (1, 49) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - C3F(Time, z_stag)float32dask.array<chunksize=(1, 50), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- Z
- description :
- full levels, c3f = bf
- units :
- 1
- stagger :
- Z
Array Chunk Bytes 5.47 kiB 200 B Shape (28, 50) (1, 50) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - C4F(Time, z_stag)float32dask.array<chunksize=(1, 50), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- Z
- description :
- full levels, c4f = (eta-bf)*(p0-pt), using znw
- units :
- Pa
- stagger :
- Z
Array Chunk Bytes 5.47 kiB 200 B Shape (28, 50) (1, 50) Dask graph 28 chunks in 57 graph layers Data type float32 numpy.ndarray - PCB(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- base state dry air mass in column
- units :
- Pa
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - PC(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- perturbation dry air mass in column
- units :
- Pa
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - LANDMASK(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- LAND MASK (1 FOR LAND, 0 FOR WATER)
- units :
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - LAKEMASK(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- LAKE MASK (1 FOR LAKE, 0 FOR NON-LAKE)
- units :
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - SST(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- SEA SURFACE TEMPERATURE
- units :
- K
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - SST_INPUT(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- SEA SURFACE TEMPERATURE FROM WRFLOWINPUT FILE
- units :
- K
- stagger :
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 57 graph layers Data type float32 numpy.ndarray - air_potential_temperature(Time, z, y, x)float32dask.array<chunksize=(1, 49, 101, 101), meta=np.ndarray>
- units :
- K
- standard_name :
- air_potential_temperature
- grid_mapping :
- wrf_projection
Array Chunk Bytes 211.45 MiB 1.91 MiB Shape (28, 49, 201, 201) (1, 49, 101, 101) Dask graph 112 chunks in 58 graph layers Data type float32 numpy.ndarray - air_pressure(Time, z, y, x)float32dask.array<chunksize=(1, 49, 101, 101), meta=np.ndarray>
- units :
- Pa
- standard_name :
- air_pressure
- grid_mapping :
- wrf_projection
Array Chunk Bytes 211.45 MiB 1.91 MiB Shape (28, 49, 201, 201) (1, 49, 101, 101) Dask graph 112 chunks in 115 graph layers Data type float32 numpy.ndarray - geopotential(Time, z_stag, y, x)float32dask.array<chunksize=(1, 50, 101, 101), meta=np.ndarray>
- units :
- m**2 s**-2
- standard_name :
- geopotential
- stagger :
- Z
- grid_mapping :
- wrf_projection
Array Chunk Bytes 215.76 MiB 1.95 MiB Shape (28, 50, 201, 201) (1, 50, 101, 101) Dask graph 112 chunks in 115 graph layers Data type float32 numpy.ndarray - geopotential_height(Time, z_stag, y, x)float32dask.array<chunksize=(1, 50, 101, 101), meta=np.ndarray>
- units :
- m
- standard_name :
- geopotential_height
- stagger :
- Z
- grid_mapping :
- wrf_projection
Array Chunk Bytes 215.76 MiB 1.95 MiB Shape (28, 50, 201, 201) (1, 50, 101, 101) Dask graph 112 chunks in 116 graph layers Data type float32 numpy.ndarray - wind_east(Time, z, y, x)float32dask.array<chunksize=(1, 49, 100, 100), meta=np.ndarray>
- description :
- earth-relative x-wind component
- standard_name :
- eastward_wind
- units :
- m s-1
- grid_mapping :
- wrf_projection
Array Chunk Bytes 211.45 MiB 1.87 MiB Shape (28, 49, 201, 201) (1, 49, 100, 100) Dask graph 252 chunks in 251 graph layers Data type float32 numpy.ndarray - wind_north(Time, z, y, x)float32dask.array<chunksize=(1, 49, 100, 100), meta=np.ndarray>
- description :
- earth-relative y-wind component
- standard_name :
- northward_wind
- units :
- m s-1
- grid_mapping :
- wrf_projection
Array Chunk Bytes 211.45 MiB 1.87 MiB Shape (28, 49, 201, 201) (1, 49, 100, 100) Dask graph 252 chunks in 251 graph layers Data type float32 numpy.ndarray - wind_east_10(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- description :
- earth-relative 10m x-wind component
- units :
- m s-1
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 231 graph layers Data type float32 numpy.ndarray - wind_north_10(Time, y, x)float32dask.array<chunksize=(1, 101, 101), meta=np.ndarray>
- description :
- earth-relative 10m y-wind component
- units :
- m s-1
- grid_mapping :
- wrf_projection
Array Chunk Bytes 4.32 MiB 39.85 kiB Shape (28, 201, 201) (1, 101, 101) Dask graph 112 chunks in 231 graph layers Data type float32 numpy.ndarray - wrf_projection()object+proj=lcc +x_0=0 +y_0=0 +a=63700...
- crs_wkt :
- PROJCRS["unknown",BASEGEOGCRS["unknown",DATUM["unknown",ELLIPSOID["unknown",6370000,0,LENGTHUNIT["metre",1,ID["EPSG",9001]]]],PRIMEM["Greenwich",0,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8901]]],CONVERSION["unknown",METHOD["Lambert Conic Conformal (2SP)",ID["EPSG",9802]],PARAMETER["Latitude of false origin",38.900016784668,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8821]],PARAMETER["Longitude of false origin",-107,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8822]],PARAMETER["Latitude of 1st standard parallel",30,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8823]],PARAMETER["Latitude of 2nd standard parallel",50,ANGLEUNIT["degree",0.0174532925199433],ID["EPSG",8824]],PARAMETER["Easting at false origin",0,LENGTHUNIT["metre",1],ID["EPSG",8826]],PARAMETER["Northing at false origin",0,LENGTHUNIT["metre",1],ID["EPSG",8827]]],CS[Cartesian,2],AXIS["(E)",east,ORDER[1],LENGTHUNIT["metre",1,ID["EPSG",9001]]],AXIS["(N)",north,ORDER[2],LENGTHUNIT["metre",1,ID["EPSG",9001]]]]
- semi_major_axis :
- 6370000.0
- semi_minor_axis :
- 6370000.0
- inverse_flattening :
- 0.0
- reference_ellipsoid_name :
- unknown
- longitude_of_prime_meridian :
- 0.0
- prime_meridian_name :
- Greenwich
- geographic_crs_name :
- unknown
- horizontal_datum_name :
- unknown
- projected_crs_name :
- unknown
- grid_mapping_name :
- lambert_conformal_conic
- standard_parallel :
- (30.0, 50.0)
- latitude_of_projection_origin :
- 38.90001678466797
- longitude_of_central_meridian :
- -107.0
- false_easting :
- 0.0
- false_northing :
- 0.0
array(<Projected CRS: +proj=lcc +x_0=0 +y_0=0 +a=6370000 +b=6370000 +lat ...> Name: unknown Axis Info [cartesian]: - E[east]: Easting (metre) - N[north]: Northing (metre) Area of Use: - undefined Coordinate Operation: - name: unknown - method: Lambert Conic Conformal (2SP) Datum: unknown - Ellipsoid: unknown - Prime Meridian: Greenwich , dtype=object)
- zPandasIndex
PandasIndex(Index([ 0.9967355728149414, 0.9893206357955933, 0.9799258708953857, 0.9681073427200317, 0.9533711671829224, 0.9351978302001953, 0.9130828976631165, 0.8865982294082642, 0.8554682731628418, 0.8196507692337036, 0.7794029712677002, 0.7353180646896362, 0.6907134056091309, 0.6484591960906982, 0.6084318161010742, 0.5705137252807617, 0.5345938205718994, 0.5005667209625244, 0.4683328866958618, 0.4377976655960083, 0.408871591091156, 0.3814697861671448, 0.35551202297210693, 0.3309221863746643, 0.30762815475463867, 0.28556162118911743, 0.2646579444408417, 0.2448558509349823, 0.22609728574752808, 0.2083272635936737, 0.19149364531040192, 0.17554712295532227, 0.16044092178344727, 0.14613081514835358, 0.13257481157779694, 0.11973315477371216, 0.10756823420524597, 0.0960443988442421, 0.0851278156042099, 0.0747864842414856, 0.06499014794826508, 0.0557100772857666, 0.04691901057958603, 0.03859121352434158, 0.030702289193868637, 0.023229092359542847, 0.016149718314409256, 0.009443413466215134, 0.003090500133112073], dtype='float32', name='z'))
- z_stagPandasIndex
PandasIndex(Index([ 1.0, 0.993471086025238, 0.9851701259613037, 0.9746816754341125, 0.9615330100059509, 0.9452093839645386, 0.9251862168312073, 0.9009795784950256, 0.8722169399261475, 0.8387195467948914, 0.8005820512771606, 0.7582239508628845, 0.7124121785163879, 0.669014573097229, 0.6279038786888123, 0.5889596939086914, 0.5520676970481873, 0.5171198844909668, 0.4840136170387268, 0.45265212655067444, 0.42294323444366455, 0.3947999179363251, 0.36813968420028687, 0.342884361743927, 0.3189599812030792, 0.2962963581085205, 0.27482691407203674, 0.2544889748096466, 0.2352227419614792, 0.21697182953357697, 0.19968268275260925, 0.18330460786819458, 0.16778962314128876, 0.15309223532676697, 0.13916939496994019, 0.1259802281856537, 0.11348608881235123, 0.10165038704872131, 0.09043841063976288, 0.07981722801923752, 0.06975574791431427, 0.06022455543279648, 0.051195595413446426, 0.04264242574572563, 0.03454000502824783, 0.02686457335948944, 0.019593609496951103, 0.012705827131867409, 0.006181000266224146, 0.0], dtype='float32', name='z_stag'))
- TimePandasIndex
PandasIndex(DatetimeIndex(['2023-04-03 00:00:00', '2023-04-03 06:00:00', '2023-04-03 12:00:00', '2023-04-03 18:00:00', '2023-04-04 00:00:00', '2023-04-04 06:00:00', '2023-04-04 12:00:00', '2023-04-04 18:00:00', '2023-04-05 00:00:00', '2023-04-05 06:00:00', '2023-04-05 12:00:00', '2023-04-05 18:00:00', '2023-04-06 00:00:00', '2023-04-06 06:00:00', '2023-04-06 12:00:00', '2023-04-06 18:00:00', '2023-04-07 00:00:00', '2023-04-07 06:00:00', '2023-04-07 12:00:00', '2023-04-07 18:00:00', '2023-04-08 00:00:00', '2023-04-08 06:00:00', '2023-04-08 12:00:00', '2023-04-08 18:00:00', '2023-04-09 00:00:00', '2023-04-09 06:00:00', '2023-04-09 12:00:00', '2023-04-09 18:00:00'], dtype='datetime64[ns]', name='Time', freq=None))
- xPandasIndex
PandasIndex(Index([-53443.82594293087, -52943.82594293087, -52443.82594293087, -51943.82594293087, -51443.82594293087, -50943.82594293087, -50443.82594293087, -49943.82594293087, -49443.82594293087, -48943.82594293087, ... 42056.17405706913, 42556.17405706913, 43056.17405706913, 43556.17405706913, 44056.17405706913, 44556.17405706913, 45056.17405706913, 45556.17405706913, 46056.17405706913, 46556.17405706913], dtype='float64', name='x', length=201))
- yPandasIndex
PandasIndex(Index([-55999.21763437279, -55499.21763437279, -54999.21763437279, -54499.21763437279, -53999.21763437279, -53499.21763437279, -52999.21763437279, -52499.21763437279, -51999.21763437279, -51499.21763437279, ... 39500.78236562721, 40000.78236562721, 40500.78236562721, 41000.78236562721, 41500.78236562721, 42000.78236562721, 42500.78236562721, 43000.78236562721, 43500.78236562721, 44000.78236562721], dtype='float64', name='y', length=201))
- y_stagPandasIndex
PandasIndex(Index([-56249.21763437279, -55749.21763437279, -55249.21763437279, -54749.21763437279, -54249.21763437279, -53749.21763437279, -53249.21763437279, -52749.21763437279, -52249.21763437279, -51749.21763437279, ... 39750.78236562721, 40250.78236562721, 40750.78236562721, 41250.78236562721, 41750.78236562721, 42250.78236562721, 42750.78236562721, 43250.78236562721, 43750.78236562721, 44250.78236562721], dtype='float64', name='y_stag', length=202))
- x_stagPandasIndex
PandasIndex(Index([-53693.82594293087, -53193.82594293087, -52693.82594293087, -52193.82594293087, -51693.82594293087, -51193.82594293087, -50693.82594293087, -50193.82594293087, -49693.82594293087, -49193.82594293087, ... 42306.17405706913, 42806.17405706913, 43306.17405706913, 43806.17405706913, 44306.17405706913, 44806.17405706913, 45306.17405706913, 45806.17405706913, 46306.17405706913, 46806.17405706913], dtype='float64', name='x_stag', length=202))
- TITLE :
- OUTPUT FROM WRF V4.4 MODEL
- START_DATE :
- 2023-03-25_00:00:00
- SIMULATION_START_DATE :
- 2021-09-15_00:00:00
- WEST-EAST_GRID_DIMENSION :
- 202
- SOUTH-NORTH_GRID_DIMENSION :
- 202
- BOTTOM-TOP_GRID_DIMENSION :
- 50
- DX :
- 500.0
- DY :
- 500.0
- AERCU_OPT :
- 0
- AERCU_FCT :
- 1.0
- IDEAL_CASE :
- 0
- DIFF_6TH_SLOPEOPT :
- 0
- AUTO_LEVELS_OPT :
- 2
- DIFF_6TH_THRESH :
- 0.1
- DZBOT :
- 50.0
- DZSTRETCH_S :
- 1.3
- DZSTRETCH_U :
- 1.1
- SKEBS_ON :
- 0
- USE_Q_DIABATIC :
- 0
- GRIDTYPE :
- C
- DIFF_OPT :
- 1
- KM_OPT :
- 4
- DAMP_OPT :
- 0
- DAMPCOEF :
- 0.2
- KHDIF :
- 0.0
- KVDIF :
- 0.0
- MP_PHYSICS :
- 8
- RA_LW_PHYSICS :
- 3
- RA_SW_PHYSICS :
- 3
- SF_SFCLAY_PHYSICS :
- 2
- SF_SURFACE_PHYSICS :
- 4
- BL_PBL_PHYSICS :
- 2
- CU_PHYSICS :
- 0
- SF_LAKE_PHYSICS :
- 0
- SURFACE_INPUT_SOURCE :
- 1
- SST_UPDATE :
- 1
- GHG_INPUT :
- 1
- GRID_FDDA :
- 0
- GFDDA_INTERVAL_M :
- 0
- GFDDA_END_H :
- 0
- GRID_SFDDA :
- 0
- SGFDDA_INTERVAL_M :
- 0
- SGFDDA_END_H :
- 0
- HYPSOMETRIC_OPT :
- 2
- USE_THETA_M :
- 1
- GWD_OPT :
- 0
- SF_URBAN_PHYSICS :
- 0
- SF_SURFACE_MOSAIC :
- 0
- SF_OCEAN_PHYSICS :
- 0
- SHCU_PHYSICS :
- 0
- MFSHCONV :
- 0
- FEEDBACK :
- 0
- SMOOTH_OPTION :
- 0
- SWRAD_SCAT :
- 1.0
- W_DAMPING :
- 0
- DT :
- 2.6666667
- RADT :
- 3.0
- BLDT :
- 0.0
- CUDT :
- 0.0
- AER_OPT :
- 0
- SWINT_OPT :
- 0
- AER_TYPE :
- 1
- AER_AOD550_OPT :
- 1
- AER_ANGEXP_OPT :
- 1
- AER_SSA_OPT :
- 1
- AER_ASY_OPT :
- 1
- AER_AOD550_VAL :
- 0.12
- AER_ANGEXP_VAL :
- 1.3
- AER_SSA_VAL :
- 0.85
- AER_ASY_VAL :
- 0.9
- MOIST_ADV_OPT :
- 1
- SCALAR_ADV_OPT :
- 1
- TKE_ADV_OPT :
- 1
- DIFF_6TH_OPT :
- 2
- DIFF_6TH_FACTOR :
- 0.12
- OBS_NUDGE_OPT :
- 0
- BUCKET_MM :
- -1.0
- BUCKET_J :
- -1.0
- PREC_ACC_DT :
- 0.0
- ISFTCFLX :
- 0
- ISHALLOW :
- 0
- ISFFLX :
- 1
- ICLOUD :
- 1
- ICLOUD_CU :
- 0
- TRACER_PBLMIX :
- 1
- SCALAR_PBLMIX :
- 0
- YSU_TOPDOWN_PBLMIX :
- 1
- GRAV_SETTLING :
- 0
- CLDOVRLP :
- 2
- IDCOR :
- 0
- OPT_SFC :
- 1
- DVEG :
- 4
- OPT_CRS :
- 1
- OPT_BTR :
- 1
- OPT_RUN :
- 1
- OPT_FRZ :
- 1
- OPT_INF :
- 1
- OPT_RAD :
- 3
- OPT_ALB :
- 2
- OPT_SNF :
- 4
- OPT_TBOT :
- 2
- OPT_STC :
- 1
- OPT_GLA :
- 1
- OPT_RSF :
- 1
- OPT_SOIL :
- 1
- OPT_PEDO :
- 1
- OPT_CROP :
- 0
- OPT_IRR :
- 0
- OPT_IRRM :
- 0
- DFI_OPT :
- 0
- NTASKS_X :
- 8
- NTASKS_Y :
- 10
- NTASKS_TOTAL :
- 80
- SIMULATION_INITIALIZATION_TYPE :
- REAL-DATA CASE
- WEST-EAST_PATCH_START_UNSTAG :
- 1
- WEST-EAST_PATCH_END_UNSTAG :
- 201
- WEST-EAST_PATCH_START_STAG :
- 1
- WEST-EAST_PATCH_END_STAG :
- 202
- SOUTH-NORTH_PATCH_START_UNSTAG :
- 1
- SOUTH-NORTH_PATCH_END_UNSTAG :
- 201
- SOUTH-NORTH_PATCH_START_STAG :
- 1
- SOUTH-NORTH_PATCH_END_STAG :
- 202
- BOTTOM-TOP_PATCH_START_UNSTAG :
- 1
- BOTTOM-TOP_PATCH_END_UNSTAG :
- 49
- BOTTOM-TOP_PATCH_START_STAG :
- 1
- BOTTOM-TOP_PATCH_END_STAG :
- 50
- GRID_ID :
- 3
- PARENT_ID :
- 2
- I_PARENT_START :
- 67
- J_PARENT_START :
- 67
- PARENT_GRID_RATIO :
- 3
- CEN_LAT :
- 38.84523
- CEN_LON :
- -107.040375
- TRUELAT1 :
- 30.0
- TRUELAT2 :
- 50.0
- MOAD_CEN_LAT :
- 38.900017
- STAND_LON :
- -107.0
- POLE_LAT :
- 90.0
- POLE_LON :
- 0.0
- GMT :
- 0.0
- JULYR :
- 2023
- JULDAY :
- 84
- MAP_PROJ :
- 1
- MAP_PROJ_CHAR :
- Lambert Conformal
- MMINLU :
- MODIFIED_IGBP_MODIS_NOAH
- NUM_LAND_CAT :
- 21
- ISWATER :
- 17
- ISLAKE :
- 21
- ISICE :
- 15
- ISURBAN :
- 13
- ISOILWATER :
- 14
- HYBRID_OPT :
- 2
- ETAC :
- 0.2
ds_dust["T2"].load()
ds_dust["T2"].mean(dim=['x', 'y']).hvplot(x="Time")