Parquet Logo

Store virtual datasets as Kerchunk Parquet references

Overview

In this notebook we will cover how to store virtual datasets as Kerchunk Parquet references instead of Kerchunk JSON references. For large virtual datasets, using Parquet should have performance implications as the overall reference file size should be smaller and the memory overhead of combining the reference files should be lower.

This notebook builds upon the Kerchunk Basics, Multi-File Datasets with Kerchunk and the Kerchunk and Dask notebooks.

Prerequisites

  • Time to learn: 30 minutes


Imports

import logging

import dask
import fsspec
import xarray as xr
from distributed import Client
from virtualizarr import open_virtual_dataset

Setting up the Dask Client

client = Client(n_workers=8, silence_logs=logging.ERROR)
client

Client

Client-5c0306aa-b0ee-11ef-8a49-7c1e5222ecf8

Connection method: Cluster object Cluster type: distributed.LocalCluster
Dashboard: http://127.0.0.1:8787/status

Cluster Info

Create Input File List

Here we are using fsspec's glob functionality along with the * wildcard operator and some string slicing to grab a list of NetCDF files from a s3 fsspec filesystem.

# Initiate fsspec filesystems for reading
fs_read = fsspec.filesystem("s3", anon=True, skip_instance_cache=True)

files_paths = fs_read.glob("s3://smn-ar-wrf/DATA/WRF/DET/2022/12/31/12/*")

# Here we prepend the prefix 's3://', which points to AWS.
files_paths = sorted(["s3://" + f for f in files_paths])

Subset the Data

To speed up our example, lets take a subset of the year of data.

# If the subset_flag == True (default), the list of input files will
# be subset to speed up the processing
subset_flag = True
if subset_flag:
    files_paths = files_paths[0:4]

Generate Lazy References

Here we create a function to generate a list of Dask delayed objects.

def generate_virtual_dataset(file, storage_options):
    return open_virtual_dataset(
        file, indexes={}, reader_options={"storage_options": storage_options}
    )


storage_options = dict(anon=True, default_fill_cache=False, default_cache_type="first")
# Generate Dask Delayed objects
tasks = [
    dask.delayed(generate_virtual_dataset)(file, storage_options)
    for file in files_paths
]

Start the Dask Processing

To view the processing you can view it in real-time on the Dask Dashboard. ex: http://127.0.0.1:8787/status

virtual_datasets = list(dask.compute(*tasks))

Combine virtual datasets using VirtualiZarr

combined_vds = xr.combine_nested(
    virtual_datasets, concat_dim=["time"], coords="minimal", compat="override"
)
combined_vds
<xarray.Dataset> Size: 140MB
Dimensions:            (time: 4, y: 1249, x: 999)
Coordinates:
    y                  (y) float32 5kB ManifestArray<shape=(1249,), dtype=flo...
    time               (time) int32 16B ManifestArray<shape=(4,), dtype=int32...
    x                  (x) float32 4kB ManifestArray<shape=(999,), dtype=floa...
Data variables:
    magViento10        (time, y, x) float32 20MB ManifestArray<shape=(4, 1249...
    lat                (time, y, x) float32 20MB ManifestArray<shape=(4, 1249...
    T2                 (time, y, x) float32 20MB ManifestArray<shape=(4, 1249...
    HR2                (time, y, x) float32 20MB ManifestArray<shape=(4, 1249...
    PP                 (time, y, x) float32 20MB ManifestArray<shape=(4, 1249...
    dirViento10        (time, y, x) float32 20MB ManifestArray<shape=(4, 1249...
    lon                (time, y, x) float32 20MB ManifestArray<shape=(4, 1249...
    Lambert_Conformal  (time) float32 16B ManifestArray<shape=(4,), dtype=flo...

Write the virtual dataset to a Kerchunk Parquet reference

combined_vds.virtualize.to_kerchunk("combined.parq", format="parquet")

Shutdown the Dask cluster

client.shutdown()

Load kerchunked dataset

Next we initiate a fsspec ReferenceFileSystem. We need to pass:

  • The name of the parquet store

  • The remote protocol (This is the protocol of the input file urls)

  • The target protocol (file since we saved our parquet store locally).

storage_options = {
    "remote_protocol": "s3",
    "skip_instance_cache": True,
    "remote_options": {"anon": True},
    "target_protocol": "file",
    "lazy": True,
}  # options passed to fsspec
open_dataset_options = {"chunks": {}}  # opens passed to xarray

ds = xr.open_dataset(
    "combined.parq",
    engine="kerchunk",
    storage_options=storage_options,
    open_dataset_options=open_dataset_options,
)
ds
<xarray.Dataset> Size: 140MB
Dimensions:            (time: 4, y: 1249, x: 999)
Coordinates:
  * time               (time) float64 32B nan 1.0 2.0 3.0
  * x                  (x) float32 4kB -1.996e+06 -1.992e+06 ... 1.996e+06
  * y                  (y) float32 5kB -2.496e+06 -2.492e+06 ... 2.496e+06
Data variables:
    HR2                (time, y, x) float32 20MB ...
    Lambert_Conformal  (time) float32 16B ...
    PP                 (time, y, x) float32 20MB ...
    T2                 (time, y, x) float32 20MB ...
    dirViento10        (time, y, x) float32 20MB ...
    lat                (time, y, x) float32 20MB ...
    lon                (time, y, x) float32 20MB ...
    magViento10        (time, y, x) float32 20MB ...